Monoamines and Decision-Making Under Risks

  • Hidehiko TakahashiEmail author
Part of the Studies in Neuroscience, Psychology and Behavioral Economics book series (SNPBE)


Past neuroeconomics studies using neurophysiology methods (mainly fMRI) have revealed the neural basis of “boundedly rational” or “irrational” decision-making that violates normative economics theory. It is expected that the field of neuroeconomics will be merged with neurotransmitter research and clinical neuroscience. Here, we provide an overview of recent molecular neuroimaging studies to understand how central monoamine transmission is related to “irrational” decision-making. Empirical evidence suggests that central dopamine transmission might be related to distortion of subjective reward probability and noradrenaline and serotonin transmission might influence aversive emotional reaction to financial loss. Positron emission tomography (PET) is a powerful tool to understand the neurochemical basis of decision-making in vivo in human. This approach seems to be a promising direction to understand the neurobiology of impaired decision-making in neuropsychiatric disorders and may help to develop novel pharmacotherapy for them.


Positron Emission Tomography Pathological Gambling Prospect Theory Loss Aversion Amygdala Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



A part of this study is the result of “Integrated Research on Neuropsychiatric Disorders” carried out under the Strategic Research Program for Brain Sciences by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), a Grant-in-Aid for Scientific Research on Innovative Areas: Prediction and Decision Making (23120009), a Grant-in-Aid for Young Scientist A (23680045), a research grant from Takeda Science Foundation, a research grant from Brain Science Foundation, a research grant from Casio Science Foundation and a research grant from Senshin Medical Research Foundation.


  1. Arakawa R, Okumura M, Ito H, Seki C, Takahashi H, Takano H, Nakao R, Suzuki K, Okubo Y, Halldin C, Suhara T (2008) Quantitative analysis of norepinephrine transporter in the human brain using PET with (S, S)-18F-FMeNER-D2. J Nucl Med 49:1270–1276CrossRefPubMedGoogle Scholar
  2. Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 14(7):4467–4480PubMedGoogle Scholar
  3. Berns GS, Capra CM, Chappelow J, Moore S, Noussair C (2008) Nonlinear neurobiological probability weighting functions for aversive outcomes. Neuroimage 39:2047–2057CrossRefPubMedGoogle Scholar
  4. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42:33–84CrossRefPubMedGoogle Scholar
  5. Breyer JL, Botzet AM, Winters KC, Stinchfield RD, August G, Realmuto G (2009) Young adult gambling behaviors and their relationship with the persistence of ADHD. J Gambl Stud 25:227–238CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cahill L, Prins B, Weber M, McGaugh JL (1994) Beta-adrenergic activation and memory for emotional events. Nature 371:702–704CrossRefPubMedGoogle Scholar
  7. Camerer CF, Fehr E (2006) When does “economic man” dominate social behavior? Science 311:47–52CrossRefPubMedGoogle Scholar
  8. Camerer C, Loewenstein G (2004) Behavioral economics: past, present, future. In: Camerer C, Loewenstein G, Rabin M (eds) Advance in behavioral economics. Princeton University Press, Princeton, pp 3–51Google Scholar
  9. Chen MK, Lakshminarayanan V, Santos LR (2006) How basic are behavioral biases? Evidence from capuchin monkey trading behavior. J Polit Econ 114:517–537CrossRefGoogle Scholar
  10. Dagher A, Robbins TW (2009) Personality, addiction, dopamine: insights from Parkinson’s disease. Neuron 61:502–510CrossRefPubMedGoogle Scholar
  11. De Martino B, Kumaran D, Seymour B, Dolan RJ (2006) Frames, biases, and rational decision-making in the human brain. Science 313:684–687CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Martino B, Strange BA, Dolan RJ (2008) Noradrenergic neuromodulation of human attention for emotional and neutral stimuli. Psychopharmacology 197:127–136CrossRefPubMedGoogle Scholar
  13. De Martino B, Camerer CF, Adolphs R (2010) Amygdala damage eliminates monetary loss aversion. Proc Natl Acad Sci USA 107:3788–3792CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ekelund J, Slifstein M, Narendran R, Guillin O, Belani H, Guo N, Hwang Y, Hwang D, Abi-Dargham A, Laruelle M (2007) In vivo DA D 1 receptor selectivity of NNC 112 and SCH 23390. Mol Imaging Biol 9:117–125CrossRefPubMedGoogle Scholar
  15. Gallagher DA, O’Sullivan SS, Evans AH, Lees AJ, Schrag A (2007) Pathological gambling in Parkinson’s disease: risk factors and differences from dopamine dysregulation. An analysis of published case series. Mov Disord 22:1757–1763CrossRefPubMedGoogle Scholar
  16. He Q, Xue G, Chen C, Lu Z, Dong Q, Lei X, Ding N, Li J, Li H, Chen C (2010) Serotonin transporter gene-linked polymorphic region (5-HTTLPR) influences decision making under ambiguity and risk in a large Chinese sample. Neuropharmacology 59:518–526CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hsu M, Krajbich I, Zhao C, Camerer C (2009) Neural response to reward anticipation under risk is nonlinear in probabilities. J Neurosci 29:2231–2237CrossRefPubMedGoogle Scholar
  18. Knutson B, Rick S, Wimmer GE, Prelec D, Loewenstein G (2007) Neural predictors of purchases. Neuron 53:147–156CrossRefPubMedPubMedCentralGoogle Scholar
  19. Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C] raclopride study in healthy men. Neuropsychopharmacology 27:1027CrossRefPubMedGoogle Scholar
  20. Ligneul R, Sescousse G, Barbalat G, Domenech P, Dreher J (2012) Shifted risk preferences in pathological gambling. Psychol Med (Epub ahead of print)Google Scholar
  21. Murphy SE, Longhitano C, Ayres RE, Cowen PJ, Harmer CJ, Rogers RD (2009) The role of serotonin in nonnormative risky choice: the effects of tryptophan supplements on the “reflection effect” in healthy adult volunteers. J Cogn Neurosci 21:1709–1719CrossRefPubMedGoogle Scholar
  22. Onur OA, Walter H, Schlaepfer TE, Rehme AK, Schmidt C, Keysers C, Maier W, Hurlemann R (2009) Noradrenergic enhancement of amygdala responses to fear. Soc Cogn Affect Neurosci 4:119–126CrossRefPubMedPubMedCentralGoogle Scholar
  23. Pattij T, Vanderschuren LJ (2008) The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 29:192–199CrossRefPubMedGoogle Scholar
  24. Paulus M, Frank L (2006) Anterior cingulate activity modulates nonlinear decision weight function of uncertain prospects. Neuroimage 30:668–677CrossRefPubMedGoogle Scholar
  25. Prelec D (1998) The probability weighting function. Econometrica 66:497–527CrossRefGoogle Scholar
  26. Rangel A, Camerer C, Montague PR (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9:545–556CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rasch B, Spalek K, Buholzer S, Luechinger R, Boesiger P, Papassotiropoulos A, de Quervain DJ (2009) A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proc Natl Acad Sci USA 106:19191–19196CrossRefPubMedPubMedCentralGoogle Scholar
  28. Rogers R, Lancaster M, Wakeley J, Bhagwagar Z (2004) Effects of beta-adrenoceptor blockade on components of human decision-making. Psychopharmacology 172:157–164CrossRefPubMedGoogle Scholar
  29. Roiser JP, de Martino B, Tan GC, Kumaran D, Seymour B, Wood NW, Dolan RJ (2009) A genetically mediated bias in decision making driven by failure of amygdala control. J Neurosci 29:5985–5991CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sanfey AG, Rilling JK, Aronson JA, Nystrom LE, Cohen JD (2003) The neural basis of economic decision-making in the ultimatum game. Science 300:1755–1758CrossRefPubMedGoogle Scholar
  31. Schou M, Halldin C, Sóvágó J, Pike VW, Hall H, Gulyás B, Mozley PD, Dobson D, Shchukin E, Innis RB (2004) PET evaluation of novel radiofluorinated reboxetine analogs as norepinephrine transporter probes in the monkey brain. Synapse 53:57–67CrossRefPubMedGoogle Scholar
  32. Shioe K, Ichimiya T, Suhara T, Takano A, Sudo Y, Yasuno F, Hirano M, Shinohara M, Kagami M, Okubo Y, Nankai M, Kanba S (2003) No association between genotype of the promoter region of serotonin transporter gene and serotonin transporter binding in human brain measured by PET. Synapse 48:184–188CrossRefPubMedGoogle Scholar
  33. Singer T, Seymour B, O’Doherty JP, Stephan KE, Dolan RJ, Frith CD (2006) Empathic neural responses are modulated by the perceived fairness of others. Nature 439:466–469CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sokol-Hessner P, Hsu M, Curley NG, Delgado MR, Camerer CF, Phelps EA (2009) Thinking like a trader selectively reduces individuals’ loss aversion. Proc Natl Acad Sci USA 106:5035–5040CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sokol-Hessner P, Camerer CF, Phelps EA (2012) Emotion regulation reduces loss aversion and decreases amygdala responses to losses. Soc Cogn Affect Neurosci (Epub ahead of print)Google Scholar
  36. Steeves TD, Miyasaki J, Zurowski M, Lang AE, Pellecchia G, Van Eimeren T, Rusjan P, Houle S, Strafella AP (2009) Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain 132:1376–1385CrossRefPubMedPubMedCentralGoogle Scholar
  37. Takahashi H (2012) Monoamines and assessment of risks. Curr Opin Neurobiol 22:1062–1067CrossRefPubMedGoogle Scholar
  38. Takahashi H (2013) Molecular neuroimaging of emotional decision-making. Neurosci Res (in press)Google Scholar
  39. Takahashi H, Yahata N, Koeda M, Takano A, Asai K, Suhara T, Okubo Y (2005) Effects of dopaminergic and serotonergic manipulation on emotional processing: a pharmacological fMRI study. Neuroimage 27:991–1001CrossRefPubMedGoogle Scholar
  40. Takahashi H, Kato M, Matsuura M, Mobbs D, Suhara T, Okubo Y (2009) When your gain is my pain and your pain is my gain: neural correlates of envy and schadenfreude. Science 323:937–939CrossRefPubMedGoogle Scholar
  41. Takahashi H, Matsui H, Camerer C, Takano H, Kodaka F, Ideno T, Okubo S, Takemura K, Arakawa R, Eguchi Y, Murai T, Okubo Y, Kato M, Ito H, Suhara T (2010a) Dopamine D receptors and nonlinear probability weighting in risky choice. J Neurosci 30:16567–16572CrossRefPubMedGoogle Scholar
  42. Takahashi H, Takano H, Kodaka F, Arakawa R, Yamada M, Otsuka T, Hirano Y, Kikyo H, Okubo Y, Kato M, Obata T, Ito H, Suhara T (2010b) Contribution of dopamine D1 and D2 receptors to amygdala activity in human. J Neurosci 30:3043–3047CrossRefPubMedGoogle Scholar
  43. Takahashi H, Takano H, Camerer CF, Ideno T, Okubo S, Matsui H, Tamari Y, Takemura K, Arakawa R, Kodaka F, Yamada M, Eguchi Y, Murai T, Okubo Y, Kato M, Ito H, Suhara T (2012a) Honesty mediates the relationship between serotonin and reaction to unfairness. Proc Natl Acad Sci USA 109:4281–4284CrossRefPubMedPubMedCentralGoogle Scholar
  44. Takahashi H, Yamada M, Suhara T (2012b) Functional significance of central D1 receptors in cognition: beyond working memory. J Cereb Blood Flow Metab 32:1248–1258CrossRefPubMedPubMedCentralGoogle Scholar
  45. Takahashi H, Fujie S, Camerer C, Arakawa R, Takano H, Kodaka F, Matsui H, Ideno T, Okubo S, Takemura K, Yamada M, Eguchi Y, Murai T, Okubo Y, Kato M, Ito H, Suhara T (2013) Norepinephrine in the brain is associated with aversion to financial loss. Mol Psychiatry 18:3–4CrossRefPubMedGoogle Scholar
  46. Tobler PN, Christopoulos GI, O’Doherty JP, Dolan RJ, Schultz W (2008) Neuronal distortions of reward probability without choice. J Neurosci 28:11703–11711CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tom S, Fox C, Trepel C, Poldrack R (2007) The neural basis of loss aversion in decision-making under risk. Science 315:515–518CrossRefPubMedGoogle Scholar
  48. Trepel C, Fox C, Poldrack R (2005) Prospect theory on the brain? Toward a cognitive neuroscience of decision under risk. Cogn Brain Res 23:34–50CrossRefGoogle Scholar
  49. Tversky A, Kahneman D (1992) Advances in prospect theory: cumulative representation of uncertainty. J Risk Uncertain 5:297–323CrossRefGoogle Scholar
  50. Yamada M, Camerer CF, Fujie S, Kato M, Matsuda T, Takano H, Ito H, Suhara T, Takahashi H (2012) Neural circuits in the brain that are activated when mitigating criminal sentences. Nat Commun 3:759CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PsychiatryKyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations