An Efficient High Performance Parallelization of a Discontinuous Galerkin Spectral Element Method

  • Christoph Altmann
  • Andrea D. Beck
  • Florian Hindenlang
  • Marc Staudenmaier
  • Gregor J. Gassner
  • Claus-Dieter Munz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7686)

Abstract

We describe an efficient parallelization strategy for the discontinuous Galerkin spectral element method, illustrated by a structured grid framework. Target applications are large scale DNS and LES calculations on massively parallel systems. Due to the simple and efficient formulation of the method, a parallelization aiming at one-element-per-processor calculations is feasible; a highly desired feature for emerging multi- and many-core architectures. We show scale-up tests on up to 131,000 processors.

Keywords

Discontinuous Galerkin Spectral Element MPI Parallel HPC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Black, K.: A conservative spectral element method for the approximation of compressible fluid flow. Kybernetika 35(1), 133–146 (1999)MathSciNetGoogle Scholar
  3. 3.
    Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods: Fundamentals in Single Domains. Springer (2006)Google Scholar
  4. 4.
    Fagherazzi, S., Furbish, D., Rasetarinera, P., Hussaini, M.Y.: Application of the discontinuous spectral Galerkin method to groundwater flow. Advances in Water Resourses 27, 129–140 (2004)CrossRefGoogle Scholar
  5. 5.
    Gassner, G., Kopriva, D.: A comparison of the dispersion and dissipation errors of gauss and gauss lobatto discontinuous galerkin spectral element methods. SIAM Journal on Scientific Computing 33(5), 2560–2579 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gassner, G.J., Hindenlang, F., Munz, C.-D.: A Runge-Kutta based Discontinuous Galerkin Method with Time Accurate Local Time Stepping. In: Advances in Computational Fluid Dynamics, vol. 2, pp. 95–118. World Scientific (2011)Google Scholar
  7. 7.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous galerkin methods for unsteady problems. Computers & Fluids 61, 86–93 (2012)CrossRefGoogle Scholar
  8. 8.
    Kopriva, D., Woodruff, S., Hussaini, M.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. International Journal for Numerical Methods in Engineering 53 (2002)Google Scholar
  9. 9.
    Kopriva, D.: Metric identities and the discontinuous spectral element method on curvilinear meshes. Journal of Scientific Computing 26(3), 301–327 (2006), http://dx.doi.org/10.1007/s10915-005-9070-8 MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations. Springer (2009), http://dx.doi.org/10.1007/978-90-481-2261-5_8
  11. 11.
    Rasetarinera, P., Kopriva, D., Hussaini, M.: Discontinuous spectral element solution of acoustic radiation from thin airfoils. AIAA Journal 39(11), 2070–2075 (2001)CrossRefGoogle Scholar
  12. 12.
    Restelli, M., Giraldo, F.: A conservative discontinuous Galerkin semi-implicit formulation for the navier-stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comp. 31(3), 2231–2257 (2009)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Altmann
    • 1
  • Andrea D. Beck
    • 1
  • Florian Hindenlang
    • 1
  • Marc Staudenmaier
    • 1
  • Gregor J. Gassner
    • 1
  • Claus-Dieter Munz
    • 1
  1. 1.Institute of Aerodynamics and Gas DynamicsUniversität StuttgartStuttgartGermany

Personalised recommendations