Formal Methods for Components and Objects pp 89-108

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7542) | Cite as

Modeling Application-Level Management of Virtualized Resources in ABS

  • Einar Broch Johnsen
  • Rudolf Schlatte
  • Silvia Lizeth Tapia Tarifa

Abstract

Virtualization motivates lifting aspects of low-level resource management to the abstraction level of modeling languages, in order to model and analyze virtualized resource usage for application-level services and its relationship to service-level QoS. In this paper we illustrate how the modeling language ABS may be used for this purpose by modeling a service deployed on the cloud. Virtual machines are provided on demand to the service, which distributes service requests between its available machines depending on its application-level load balancing scheme. The resulting ABS models are used to relate the accumulated usage cost for the virtual machines to the obtained QoS for the service.

ABS is an abstract behavioral specification language for designing executable models of distributed object-oriented systems. The language combines advanced concurrency and synchronization mechanisms based on concurrent object groups with a functional language for modeling data. ABS supports deployment variability by dynamically created deployment components which act as resource-restricted execution contexts for ABS objects, for example with respect to CPU resources. The use of these artefacts is demonstrated in this paper through an example of service-level management of virtualized resources on the cloud.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agha, G.A.: ACTORS: A Model of Concurrent Computations in Distributed Systems. The MIT Press (1986)Google Scholar
  2. 2.
    Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: COSTABS: a cost and termination analyzer for ABS. In: Proc. Workshop on Partial Evaluation and Program Manipulation (PEPM 2012), pp. 151–154. ACM (2012)Google Scholar
  3. 3.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of Java Bytecode. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 157–172. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Albert, E., Genaim, S., Gómez-Zamalloa, M., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Simulating Concurrent Behaviors with Worst-Case Cost Bounds. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 353–368. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Armstrong, J.: Programming Erlang. Pragmatic Bookshelf (2007)Google Scholar
  6. 6.
    Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: A survey. IEEE Transactions on Software Engineering 30(5), 295–310 (2004)CrossRefGoogle Scholar
  7. 7.
    Bjørk, J., de Boer, F.S., Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: User-defined schedulers for real-time concurrent objects. To Appear in Innovations in Systems and Software Engineering (2012)Google Scholar
  8. 8.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems 25(6), 599–616 (2009)CrossRefGoogle Scholar
  9. 9.
    Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer (2005)Google Scholar
  10. 10.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007)MATHGoogle Scholar
  12. 12.
    de Boer, F.S., Clarke, D., Johnsen, E.B.: A Complete Guide to the Future. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    de Boer, F.S., Hähnle, R., Johnsen, E.B., Schlatte, R., Wong, P.Y.H.: Formal Modeling of Resource Management for Cloud Architectures: An Industrial Case Study. In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 91–106. Springer, Heidelberg (2012)Google Scholar
  14. 14.
    de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating Concurrent Objects: Real-Time Modeling and Schedulability Analysis. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable Availability under Denial of Service Attacks through Formal Patterns. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter adaptation. In: Proc. ICSE, pp. 111–121. IEEE (2009)Google Scholar
  17. 17.
    Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decidability and undecidability. Information and Computation 205(8), 1149–1172 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Estimation of Program Computational Complexity. In: POPL, pp. 127–139. ACM (2009)Google Scholar
  19. 19.
    Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming. Theoretical Computer Science 410(2-3), 202–220 (2009)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asynchronous real-time concurrent objects. Journal of Logic and Algebraic Programming 78(5), 402–416 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A Core Language for Abstract Behavioral Specification. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)CrossRefGoogle Scholar
  23. 23.
    Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Dynamic Resource Reallocation between Deployment Components. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010. LNCS, vol. 6447, pp. 646–661. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Validating Timed Models of Deployment Components with Parametric Concurrency. In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 46–60. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: A Formal Model of Object Mobility in Resource-Restricted Deployment Scenarios. In: Arbab, F., Ölveczky, P. (eds.) FACS 2011. LNCS, vol. 7253, pp. 187–204. Springer, Heidelberg (2012)Google Scholar
  26. 26.
    Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Modeling Resource-Aware Virtualized Applications for the Cloud in Real-Time ABS. In: Aoki, T., Tagushi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 71–86. Springer, Heidelberg (2012)Google Scholar
  27. 27.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)CrossRefMATHGoogle Scholar
  28. 28.
    Petriu, D.B., Woodside, C.M.: An intermediate metamodel with scenarios and resources for generating performance models from UML designs. Software and System Modeling 6(2), 163–184 (2007)CrossRefGoogle Scholar
  29. 29.
    Verhoef, M., Larsen, P.G., Hooman, J.: Modeling and Validating Distributed Embedded Real-Time Systems with VDM++. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 147–162. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Welc, A., Jagannathan, S., Hosking, A.: Safe futures for Java. In: Proc. OOPSLA, pp. 439–453. ACM Press (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Einar Broch Johnsen
    • 1
  • Rudolf Schlatte
    • 1
  • Silvia Lizeth Tapia Tarifa
    • 1
  1. 1.Department of InformaticsUniversity of OsloNorway

Personalised recommendations