Thermal-Aware Task Assignment for Real-Time Applications on Multi-Core Systems

  • Lars Schor
  • Hoeseok Yang
  • Iuliana Bacivarov
  • Lothar Thiele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7542)

Abstract

The reduced feature size of electronic systems and the demand for high performance lead to increased power densities and high chip temperatures, which in turn reduce the system reliability. Thermal-aware task allocation and scheduling algorithms are promising approaches to reduce the peak temperature of multi-core systems with real-time constraints. However, as long as the worst-case chip temperature is not incorporated into system analysis, no guarantees on the performance can be given. This paper explores thermal-aware task assignment strategies for real-time applications with non-deterministic workload that are running on a multi-core system. In particular, tasks are assigned to the multi-core system so that the worst-case chip temperature is minimized and all real-time deadlines are met. Each core has its own clock domain and the static assigned frequency corresponds to the minimum operation frequency such that no real-time deadline is missed. Finally, we show that the proposed temperature minimization problem can efficiently be solved by metaheuristics.

Keywords

Real-Time Systems Worst-Case Chip Temperature Task Assignment Thermal Analysis Multi-Core Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gunther, S., Binns, F., Carmean, D., Hall, J.: Managing the Impact of Increasing Microprocessor Power Consumption. Intel Technology Journal 5(1), 1–9 (2001)Google Scholar
  2. 2.
    Donald, J., Martonosi, M.: Techniques for Multicore Thermal Management: Classification and New Exploration. In: Proc. Int’l Symposium on Computer Architecture, ISCA, Boston, MA, USA, pp. 78–88. IEEE (2006)Google Scholar
  3. 3.
    Isci, C., Buyuktosunoglu, A., Cher, C.Y., Bose, P., Martonosi, M.: An Analysis of Efficient Multi-Core Global Power Management Policies: Maximizing Performance for a Given Power Budget. In: Proc. Int’l Symposium on Microarchitecture, MICRO, pp. 347–358. IEEE (2006)Google Scholar
  4. 4.
    Chantem, T., Dick, R., Hu, X.: Temperature-Aware Scheduling and Assignment for Hard Real-Time Applications on MPSoCs. In: Proc. Design, Automation and Test in Europe, DATE, Munich, Germany, pp. 288–293. ACM/IEEE (2008)Google Scholar
  5. 5.
    Murali, S., Mutapcic, A., Atienza, D., Gupta, R., Boyd, S., De Micheli, G.: Temperature-Aware Processor Frequency Assignment for MPSoCs Using Convex Optimization. In: Proc. Int’l Conf. on Hardware/Software Codesign and System Synthesis, CODES+ISSS, Salzburg, Austria, pp. 111–116. ACM (2007)Google Scholar
  6. 6.
    Fisher, N., Chen, J.J., Wang, S., Thiele, L.: Thermal-Aware Global Real-Time Scheduling on Multicore Systems. In: Proc. Real-Time and Embedded Technology and Applications Symposium, RTAS, San Francisco, USA, pp. 131–140. IEEE (2009)Google Scholar
  7. 7.
    Coskun, A., Rosing, T., Whisnant, K., Gross, K.: Static and Dynamic Temperature-Aware Scheduling for Multiprocessor SoCs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(9), 1127–1140 (2008)CrossRefGoogle Scholar
  8. 8.
    Thiele, L., Chakraborty, S., Naedele, M.: Real-Time Calculus for Scheduling Hard Real-Time Systems. In: Proc. Int. Symposium on Circuits and Systems, ISCAS, Geneva, Switzerland, vol. 4, pp. 101–104. IEEE (2000)Google Scholar
  9. 9.
    Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System Level Performance Analysis - The SymTA/S Approach. IEEE Proc. Comp. and Digital Tech. 152(2), 148–166 (2005)CrossRefGoogle Scholar
  10. 10.
    Baruah, S., Mok, A., Rosier, L.: Preemptively Scheduling Hard-Real-Time Sporadic Tasks on One Processor. In: Proc. Real-Time Systems Symposium, RTSS, Lake Buena Vista, FL, USA, pp. 182–190. IEEE (1990)Google Scholar
  11. 11.
    Wandeler, E., Maxiaguine, A., Thiele, L.: Performance Analysis of Greedy Shapers in Real-Time Systems. In: Proc. Design, Automation and Test in Europe, DATE, Munich, Germany, pp. 444–449 (2006)Google Scholar
  12. 12.
    Chen, J.J., Wang, S., Thiele, L.: Proactive Speed Scheduling for Real-Time Tasks under Thermal Constraints. In: Proc. Real-Time and Embedded Technology and Applications Symposium, RTAS, San Francisco, CA, USA, pp. 141–150. IEEE (2009)Google Scholar
  13. 13.
    Rabaey, J.M., Chandrakasan, A., Nikolic, B.: Digital Integrated Circuits, 3rd edn. Prentice Hall Press (2008)Google Scholar
  14. 14.
    Liu, Y., Dick, R.P., Shang, L., Yang, H.: Accurate Temperature-Dependent Integrated Circuit Leakage Power Estimation is Easy. In: Proc. Design, Automation and Test in Europe, DATE, Nice, France, pp. 1526–1531 (2007)Google Scholar
  15. 15.
    Skadron, K., et al.: Temperature-Aware Microarchitecture: Modeling and Implementation. ACM Trans. Architec. Code Optim. 1(1), 94–125 (2004)CrossRefGoogle Scholar
  16. 16.
    Huang, W., Ghosh, S., Velusamy, S., Sankaranarayanan, K., Skadron, K., Stan, M.: HotSpot: A Compact Thermal Modeling Methodology for Early-Stage VLSI Design. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(5), 501–513 (2006)CrossRefGoogle Scholar
  17. 17.
    Schor, L., Bacivarov, I., Yang, H., Thiele, L.: Worst-Case Temperature Guarantees for Real-Time Applications on Multi-Core Systems. In: Proc. Real-Time and Embedded Technology and Applications Symposium, RTAS, Beijing, China, pp. 87–96. IEEE (2012)Google Scholar
  18. 18.
    Ferreira, P.: Sorting Continuous-Time Signals: Analog Median and Median-Type Filters. IEEE Trans. Signal. Proces. 49(11), 2734–2744 (2001)CrossRefGoogle Scholar
  19. 19.
    Wandeler, E., Thiele, L.: Real-Time Calculus (RTC) Toolbox (2006), http://www.mpa.ethz.ch/Rtctoolbox
  20. 20.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Xie, Y., Hung, W.L.: Temperature-Aware Task Allocation and Scheduling for Embedded Multiprocessor Systems-on-Chip (MPSoC) Design. The Journal of VLSI Signal Processing 45(3), 177–189 (2006)CrossRefGoogle Scholar
  22. 22.
    Liu, Y., Yang, H., Dick, R., Wang, H., Shang, L.: Thermal vs Energy Optimization for DVFS-Enabled Processors in Embedded Systems. In: Proc. Int’l Symposium on Quality Electronic Design, ISQED, San Jose, CA, USA, pp. 204–209. IEEE (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lars Schor
    • 1
  • Hoeseok Yang
    • 1
  • Iuliana Bacivarov
    • 1
  • Lothar Thiele
    • 1
  1. 1.Computer Engineering and Networks LaboratoryETH ZurichZurichSwitzerland

Personalised recommendations