Applying MapReduce to Spreading Activation Algorithm on Large RDF Graphs

  • Jorge González Lorenzo
  • José Emilio Labra Gayo
  • José María Álvarez Rodríguez
Part of the Communications in Computer and Information Science book series (CCIS, volume 278)


Over the recent years, the Semantic Web has experienced a considerable growth. Governments and organizations are putting major efforts in making information publicly available using Semantic Web formats. Algorithms such as spreading activation have effectively been used for finding relevant and related information on Semantic Web datasets. But, as the Semantic Web grows, these datasets quickly outgrow the computational capacity of a single machine. The same computational problems found in the past in the traditional web arise. On the other hand, computational frameworks like MapReduce have proven successful resolving problems that handle large amounts of data. We introduce an implementation of the spreading activation algorithm using MapReduce paradigm, discussing the problems of applying this paradigm to graph problems and proposing solutions. Hereby, a concrete experiment with real data is presented to illustrate the algorithm performance and scalability.


Spreading Activation MapReduce Semantic Web RDF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)CrossRefGoogle Scholar
  2. 2.
    Todorova, P., Kiryakov, A., Ognyanoff, D., Peikov, I., Velkov, R., Tashev, Z.: Spreading activation componentsGoogle Scholar
  3. 3.
    Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Proceedings of the USENIX Symposium on Operating Systems Design & Implementation, OSDI 2004 (2004)Google Scholar
  4. 4.
    Alvarez, J.M., Polo, L., Abella, P., Jiménez, W., Labra, J.E.: Application of the Spreading Activation Technique for Recommending Concepts of well-known Ontologies in Medical Systems (2011)Google Scholar
  5. 5.
    Crestani, F.: Application of Spreading Activation Techniques in Information Retrieval. Artificial Intelligence Review 11, 453–482 (1997)CrossRefGoogle Scholar
  6. 6.
    Troussov, A., Sogrin, M., Judge, J., Botvich, D.: Mining sociosemantic networks using spreading activation technique. In: Proceedings of IMEDIA 2008, and I-KNOW 2008, JUCS 2008 (2008)Google Scholar
  7. 7.
    Ziegler, C.-N., Lausen, G.: Spreading Activation Models for Trust Propagation. In: Proceedings of the IEEE International Conference on e-Technology, e-Commerce, and e-Service, EEE 2004, Taipei (March 2004)Google Scholar
  8. 8.
    Lin, J., Dyer, C. (2009), Data-intensive text processing with MapReduce. In: Proceedings of Human Language Technologies (2009)Google Scholar
  9. 9.
    Berrueta, D., Gayo, J.E.L., Polo, L.: Searching over Public Administration Legal Documents Using Ontologies. In: Proceedings of Joint Conference on Knowledge-Based Software Engineering (2006)Google Scholar
  10. 10.
    Kambatla, K., Pathak, A., Pucha, H.: Towards Optimizing Hadoop Provisioning in the Cloud. In: Proceedings of the Conference on Hot Topics in Cloud Computing, HotCloud 2009 (2009)Google Scholar
  11. 11.
    Urbani, J., Maaseen, J., Bal, H.: Massive Semantic Web data compression with MapReduce. In: Proceedings of the MapReduce Workshop at HPDC (2010)Google Scholar
  12. 12.
    Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping SPARQL to Pig Latin. In: Proceedings of 3rd International Workshop on Semantic Web Information Management, SWIM (2011)Google Scholar
  13. 13.
    Przyjaciel-Zablocki, M., Schätzle, A., Hornung, T., Lausen, G.: RDFPath: Path Query Processing on Large RDF Graphs with MapReduce. In: 1st Workshop on High-Performance Computing for the Semantic Web, HPCSW 2011 (2011)Google Scholar
  14. 14.
    Lin, J., Schatz, M.: Design Patterns for Efficient Graph Algorithms in MapReduce. In: Proceedings of the Eighth Workshop on Mining and Learning with Graphs, MLG 2010 (2010)Google Scholar
  15. 15.
    Dix, A., Katifori, A., Lepouras, G., Vassilakis, C., Shabir, N.: Spreading Activation Over Ontology-Based Resources: From Personal Context To Web Scale Reasoning. International Journal of Semantic Computing (2010)Google Scholar
  16. 16.
    Urbani, J., Kotoulas, S., Maassen, J., Drost, N., Seinstra, F., Van Harmelen, F., Bal, H.: WebPie: A Web-Scale Parallel Inference Engine. In: Proceedings of the Third IEEE International Scalable Computing Challenge, SCALE 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jorge González Lorenzo
    • 1
  • José Emilio Labra Gayo
    • 1
  • José María Álvarez Rodríguez
    • 1
  1. 1.Universidad de OviedoSpain

Personalised recommendations