State Space Reduction for Sensor Networks Using Two-Level Partial Order Reduction

  • Manchun Zheng
  • David Sanán
  • Jun Sun
  • Yang Liu
  • Jin Song Dong
  • Yu Gu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7737)


Wireless sensor networks may be used to conduct critical tasks like fire detection or surveillance monitoring. It is thus important to guarantee the correctness of such systems by systematically analyzing their behaviors. Formal verification of wireless sensor networks is an extremely challenging task as the state space of sensor networks is huge, e.g., due to interleaving of sensors and intra-sensor interrupts. In this work, we develop a method to reduce the state space significantly so that state space exploration methods can be applied to a much smaller state space without missing a counterexample. Our method explores the nature of networked NesC programs and uses a novel two-level partial order reduction approach to reduce interleaving among sensors and intra-sensor interrupts. We define systematic rules for identifying dependence at sensor and network levels so that partial order reduction can be applied effectively. We have proved the soundness of the proposed reduction technique, and present experimental results to demonstrate the effectiveness of our approach.


Sensor Network Wireless Sensor Network Model Check Linear Temporal Logic Task Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Networks: a Survey. Computer Networks 38(4), 393–422 (2002)CrossRefGoogle Scholar
  3. 3.
    Archer, W., Levis, P., Regehr, J.: Interface contracts for TinyOS. In: IPSN, Massachusetts, USA, pp. 158–165 (2007)Google Scholar
  4. 4.
    Bucur, D., Kwiatkowska, M.: Bug-Free Sensors: The Automatic Verification of Context-Aware TinyOS Applications. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 101–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Bucur, D., Kwiatkowska, M.Z.: On software verification for sensor nodes. Journal of Systems and Software 84(10), 1693–1707 (2011)CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)Google Scholar
  7. 7.
    Culler, D.E., Hill, J., Buonadonna, P., Szewczyk, R., Woo, A.: A Network-Centric Approach to Embedded Software for Tiny Devices. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 114–130. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Dunkels, A., Grönvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Operating System for Tiny Networked Sensors. In: LCN, pp. 455–462 (2004)Google Scholar
  9. 9.
    Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software. In: POPL, pp. 110–121. ACM (2005)Google Scholar
  10. 10.
    Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC Language: A Holistic Approach to Networked Embedded Systems. In: PLDI, pp. 1–11 (2003)Google Scholar
  11. 11.
    Godefroid, P., Wolper, P.: Using Partial Orders for the Efficient Verification of Deadlock Freedom and Safety Properties. Formal Methods in System Design 2(2), 149–164 (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian Partial-Order Reduction. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 95–112. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hanna, Y., Rajan, H., Zhang, W.: SLEDE: a domain-specific verification framework for sensor network security protocol implementations. In: WISEC, pp. 109–118 (2008)Google Scholar
  14. 14.
    Levis, P., Gay, D.: TinyOS Programming, 1st edn. Cambridge University Press (2009)Google Scholar
  15. 15.
    Levis, P., Lee, N., Welsh, M., Culler, D.E.: TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications. In: SenSys, pp. 126–137 (2003)Google Scholar
  16. 16.
    Levis, P., Patel, N., Culler, D.E., Shenker, S.: Trickle: A Self-Regulating Algorithm for Code Propagation and Maintenance in Wireless Sensor Networks. In: NSDI, California, USA, pp. 15–28 (2004)Google Scholar
  17. 17.
    Li, P., Regehr, J.: T-Check: bug finding for sensor networks. In: IPSN, Stockholm, Sweden, pp. 174–185 (2010)Google Scholar
  18. 18.
    Luttik, B., Trčka, N.: Stuttering Congruence for Chi. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639, pp. 185–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    McInnes, A.I.: Using CSP to Model and Analyze TinyOS Applications. In: ECBS, California, USA, pp. 79–88 (2009)Google Scholar
  20. 20.
    Mottola, L., Voigt, T., Osterlind, F., Eriksson, J., Baresi, L., Ghezzi, C.: Anquiro: Enabling Efficient Static Verification of Sensor Network Software. In: SESENA, pp. 32–37 (2010)Google Scholar
  21. 21.
    Robby, Dwyer, M.B., Hatcliff, J.: Bogor: an extensible and highly-modular software model checking framework. In: ESEC/SIGSOFT FSE, pp. 267–276 (2003)Google Scholar
  22. 22.
    Robby, Dwyer, M.B., Hatcliff, J.: Bogor: A Flexible Framework for Creating Software Model Checkers. In: TAIC PART, pp. 3–22 (2006)Google Scholar
  23. 23.
    Werner, F., Faragó, D.: Correctness of Sensor Network Applications by Software Bounded Model Checking. In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 115–131. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Yang, Y., Chen, X., Gopalakrishnan, G.C., Kirby, R.M.: Efficient Stateful Dynamic Partial Order Reduction. In: Havelund, K., Majumdar, R. (eds.) SPIN 2008. LNCS, vol. 5156, pp. 288–305. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Y.: Towards a Model Checker for NesC and Wireless Sensor Networks. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 372–387. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Manchun Zheng
    • 1
  • David Sanán
    • 2
  • Jun Sun
    • 1
  • Yang Liu
    • 3
  • Jin Song Dong
    • 4
  • Yu Gu
    • 1
  1. 1.Singapore University of Technology and DesignSingapore
  2. 2.School of Computer and StatisticsTrinity College DublinIreland
  3. 3.School of Computer EngineeringNanyang Technological UniversitySingapore
  4. 4.School of ComputingNational University of SingaporeSingapore

Personalised recommendations