Advertisement

Symbolic Counterexample Generation for Discrete-Time Markov Chains

  • Nils Jansen
  • Erika Ábrahám
  • Barna Zajzon
  • Ralf Wimmer
  • Johann Schuster
  • Joost-Pieter Katoen
  • Bernd Becker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7684)

Abstract

In this paper we investigate the generation of counterexamples for discrete-time Markov chains (DTMCs) and PCTL properties. Whereas most available methods use explicit representations for at least some intermediate results, our aim is to develop fully symbolic algorithms. As in most related work, our counterexample computations are based on path search. We first adapt bounded model checking as a path search algorithm and extend it with a novel SAT-solving heuristics to prefer paths with higher probabilities. As a second approach, we use symbolic graph algorithms to find counterexamples. Experiments show that our approaches, in contrast to other existing techniques, are applicable to very large systems with millions of states.

Keywords

Target State Conjunctive Normal Form Path Search Binary Decision Diagram Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement framework for Markov decision processes. ACM TOCL 12(1), 1–45 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  5. 5.
    Wimmer, R., Braitling, B., Becker, B.: Counterexample Generation for Discrete-Time Markov Chains Using Bounded Model Checking. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Braitling, B., Wimmer, R., Becker, B., Jansen, N., Ábrahám, E.: Counterexample Generation for Markov Chains Using SMT-Based Bounded Model Checking. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE 2011. LNCS, vol. 6722, pp. 75–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Günther, M., Schuster, J., Siegle, M.: Symbolic calculation of k-shortest paths and related measures with the stochastic process algebra tool Caspa. In: Proc. of DYADEM-FTS 2010, pp. 13–18. ACM Press (2010)Google Scholar
  8. 8.
    Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)CrossRefGoogle Scholar
  9. 9.
    Kattenbelt, M., Huth, M.: Verification and refutation of probabilistic specifications via games. In: Proc. of FSTTCS 2009. LIPIcs, vol. 4, pp. 251–262. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)Google Scholar
  10. 10.
    Fecher, H., Huth, M., Piterman, N., Wagner, D.: PCTL model checking of Markov chains: Truth and falsity as winning strategies in games. Performance Evaluation 67(9), 858–872 (2010)CrossRefGoogle Scholar
  11. 11.
    Andrés, M.E., D’Argenio, P., van Rossum, P.: Significant Diagnostic Counterexamples in Probabilistic Model Checking. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 129–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of counterexamples for stochastic model checking. IEEE Trans. on Software Engineering 36(1), 37–60 (2010)CrossRefGoogle Scholar
  13. 13.
    Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.: Hierarchical Counterexamples for Discrete-Time Markov Chains. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Wimmer, R., Jansen, N., Ábrahám, E., Becker, B., Katoen, J.-P.: Minimal Critical Subsystems for Discrete-Time Markov Models. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 299–314. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)zbMATHCrossRefGoogle Scholar
  16. 16.
    Fujita, M., McGeer, P.C., Yang, J.C.Y.: Multi-terminal binary decision diagrams: An efficient data structure for matrix representation. Formal Methods in System Design 10(2/3), 149–169 (1997)CrossRefGoogle Scholar
  17. 17.
    Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M.Z., Ryan, M.: Symbolic Model Checking for Probabilistic Processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Parker, D.: Implementation of Symbolic Model Checking for Probabilistic Systems. PhD thesis, University of Birmingham (2002)Google Scholar
  19. 19.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)zbMATHCrossRefGoogle Scholar
  20. 20.
    Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Performance Evaluation 68(2), 90–104 (2011)CrossRefGoogle Scholar
  21. 21.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Kwiatkowska, M., Norman, G., Parker, D.: The PRISM benchmark suite. In: Proc. of QEST. IEEE CS (September 2012)Google Scholar
  23. 23.
    Tseitin, G.S.: On the complexity of derivations in the propositional calculus. Studies in Mathematics and Mathematical Logic (Part II), 115–125 (1968)Google Scholar
  24. 24.
    Schmid, W.: Berechnung kürzester Wege in Straßennetzen mit Wegeverboten. PhD thesis, Universität Stuttgart, Fakultät für Bauingenieur- und Vermessungswesen (2000)Google Scholar
  25. 25.
    Somenzi, F.: Cudd: Cu decision diagram package release 2.4.1 (2005)Google Scholar
  26. 26.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of Computer Security 14(6), 561–589 (2006)Google Scholar
  28. 28.
    Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans. on Information and System Security 1(1), 66–92 (1998)CrossRefGoogle Scholar
  29. 29.
    Jansen, N., Ábrahám, E., Volk, M., Wimmer, R., Katoen, J.-P., Becker, B.: The COMICS Tool – Computing Minimal Counterexamples for DTMCs. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 349–353. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nils Jansen
    • 1
  • Erika Ábrahám
    • 1
  • Barna Zajzon
    • 1
  • Ralf Wimmer
    • 2
  • Johann Schuster
    • 3
  • Joost-Pieter Katoen
    • 1
  • Bernd Becker
    • 2
  1. 1.RWTH Aachen UniversityGermany
  2. 2.Albert-Ludwigs-University FreiburgGermany
  3. 3.University of the Federal Armed Forces MunichGermany

Personalised recommendations