Dynamic Voting Interface in Social Media: Does it Affect Individual Votes?

  • Michail Tsikerdekis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7741)


The rise in popularity of social media along with new web technologies has presented designers and developers with tremendous new interface opportunities for evaluating user-generated content. One of these new interface designs found in social media today, is the dynamic voting interface; voting results are public from the initiation of an evaluation procedure and are constantly being updated. However, it is currently unclear on whether these interfaces affect the outcome of a voting process and to what degree. This study employed a mixed methods survey as an attempt to try and answer these questions and provide exploratory evidence for the effects of dynamic voting interfaces on social media communities. Findings coming from this study are able to provide support for the “no effect” hypothesis.


dynamic voting interface social media design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gavish, B., Gerdes, J.H.: Voting mechanisms and their implications in a GDSS environment. Annals of Operations Research 71, 41–74 (1997)zbMATHCrossRefGoogle Scholar
  2. 2.
    Turoff, M., Hiltz, S.R., Cho, H., Li, Z., Wang, Y.: Social Decision Support Systems (SDSS). In: Proceedings of the 35th Hawaii International Conference on System Sciences, pp. 1–10 (2002)Google Scholar
  3. 3.
    Hiltz, S.R., Turoff, M.: Structuring computer-mediated communication systems to avoid information overload. Communications of the ACM 28, 680–689 (1985)CrossRefGoogle Scholar
  4. 4.
    Gerlitz, C., Helmond, A.: Hit, Link, Like and Share. Organizing the social and the fabric of the web in a Like economy. In: DMI Mini Conference University of Amsterdam, pp. 24–25 (2011)Google Scholar
  5. 5.
    Li, Z.: Design and evaluation of a voting tool in a collaborative environment (2003)Google Scholar
  6. 6.
    Wagenmakers, E.-J., Lee, M.D., Lodewyckx, T., Iverson, G.: Bayesian versus frequentist inference. In: Hoijtink, H., Klugkist, I., Boelen, P.A. (eds.) Bayesian Evaluation of Informative Hypotheses in Psychology, pp. 181–207. Springer, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Kaptein, M., Robertson, J.: Rethinking statistical analysis methods for CHI. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, CHI 2012, p. 1105 (2012)Google Scholar
  8. 8.
    Bryman, A.: Social Research Methods. Oxford University Press, Oxford (2012)Google Scholar
  9. 9.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons 53, 59–68 (2010)CrossRefGoogle Scholar
  10. 10.
    Kaplan, A.M., Haenlein, M.: The early bird catches the news: Nine things you should know about micro-blogging. Business Horizons 54, 105–113 (2011)CrossRefGoogle Scholar
  11. 11.
    Dennis, A.R., George, J.F., Jessup, L.M., Nunamaker, J.F., Vogel, D.R.: Information technology to support electronic meetings. MIS Quarterly 12, 591–624 (1988)CrossRefGoogle Scholar
  12. 12.
    Dufner, D., Hiltz, S.R., Turoff, M.: Distributed group support: a preliminary analysis of the effects of the use of voting tools and sequential procedures. In: Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences. Information Systems: Collaboration Technology Organizational Systems and Technology, vol. IV, pp. 114–123. IEEE (1994)Google Scholar
  13. 13.
    Fjermestad, J.: An Integrated Framework for Group Support Systems. Journal of Organizational Computing and Electronic Commerce 8, 83–107 (1998)CrossRefGoogle Scholar
  14. 14.
    Ki Jeong, C., Hung Kook, P.: Examining the conflicting results of GDSS research. Information Management 33, 313–325 (1998)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Cheng, K.-E., Wang, Y., Hiltz, S.R.: Thurstone’s Law of Comparative Judgment for Group Support. In: AMCIS 2001 Proceedings, Paper 48 (2001)Google Scholar
  16. 16.
    Pervan, G.P., Atkinson, D.J.: GDSS research: An overview and historical analysis. Group Decision and Negotiation 4, 475–483 (1995)CrossRefGoogle Scholar
  17. 17.
    Seibold, D.R., Heller, M.A., Contractor, N.S.: Group decision support systems (GDSS): Review, taxonomy, and research agenda. In: Kovačič, B. (ed.) New Approaches to Organizational Communication, pp. 143–168. SUNY Press (1994)Google Scholar
  18. 18.
    Nunamaker, J.F., Dennis, A.R., Valacich, J.S., Vogel, D., George, J.F.: Electronic meeting systems. Communications of the ACM 34, 40–61 (1991)CrossRefGoogle Scholar
  19. 19.
    Turoff, M., Hiltz, S.R., Bahgat, A.N.F., Rana, A.R.: Distributed Group Support Systems. MIS Quarterly 17, 399–417 (1993)CrossRefGoogle Scholar
  20. 20.
    Dummett, M.A.E.: Voting Procedures. Clarendon Press (1984)Google Scholar
  21. 21.
    Felsenthal, D.S.: Topics in social choice: sophisticated voting, efficacy, and proportional representation. Praeger (1990)Google Scholar
  22. 22.
    Brams, S.J.: Alternative Voting Systems. In: Maisel, L.S. (ed.) Political Pareties and Elections in the United States: An Encyclopedia, pp. 23–31. Garland, New York (1991)Google Scholar
  23. 23.
    Hiltz, S.R., Turoff, M., Johnson, K.: Experiments in group decision making, 3: disinhibition, deindividuation, and group process in pen name and real name computer conferences. Decision Support Systems 5, 217–232 (1989)CrossRefGoogle Scholar
  24. 24.
    Hoffman, L.J.: Internet voting: will it spur or corrupt democracy? In: Proceedings of the Tenth Conference on Computers, Freedom and Privacy: Challenging the Assumptions, pp. 219–223. ACM, New York (2000)CrossRefGoogle Scholar
  25. 25.
    Ladner, A., Pianzola, J.: Do Voting Advice Applications Have an Effect on Electoral Participation and Voter Turnout? Evidence from the 2007 Swiss Federal Elections. In: Tambouris, E., Macintosh, A., Glassey, O. (eds.) ePart 2010. LNCS, vol. 6229, pp. 211–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  26. 26.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can social bookmarking improve web search? In: Proceedings of the International Conference on Web Search and Web Data Mining, WSDM 2008, vol. 301, p. 195 (2008)Google Scholar
  27. 27.
    Turnbull, D.: Rating, voting & ranking: designing for collaboration & consensus. In: CHI 2007 Extended Abstracts on Human Factors in Computing Systems, pp. 2705–2710 (2007)Google Scholar
  28. 28.
  29. 29.
    Zhang, L., Tu, W.: Six Degrees of Separation in Online Society. Distribution 3, 1–5 (2006)Google Scholar
  30. 30.
    Wright, J.D., Marsden, P.V.: Survey Research and Social Science: History, Current Practice, and Future Prospects. In: Wright, J.D., Marsden, P.V. (eds.) Handbook of Survey Research, pp. 3–26. Emerald Group Publishing, Bingley (2010)Google Scholar
  31. 31.
    Lewin, C.: Understanding and Describing Quantitative Data. In: Somekh, B., Lewin, C. (eds.) Research Methods in the Social Sciences, pp. 220–230. Sage, London (2005)Google Scholar
  32. 32.
    Tsikerdekis, M.: The choice of complete anonymity versus pseudonymity for aggression online. eMinds International Journal on Human-Computer Interaction 2, 35–57 (2012)Google Scholar
  33. 33.
    Watts, D.J., Dodds, P.S., Newman, M.E.J.: Identity and Search in Social Networks. Science 296, 1302–1305 (2002)CrossRefGoogle Scholar
  34. 34.
    Jackman, S.: Bayesian Analysis for the Social Sciences. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  35. 35.
    Jeffreys, H.: Theory of Probability. Clarendon Press (1998)Google Scholar
  36. 36.
    Kruschke, J.K.: Doing Bayesian Data Analysis: A Tutorial with R and BUGS. Academic Press (2010)Google Scholar
  37. 37.
    Cox, R.T.: The Algebra of Probable Inference. American Journal of Physics 31, 66 (1963)CrossRefGoogle Scholar
  38. 38.
    Jaynes, E.T.: Bayesian methods: general background. In: Justice, J.H. (ed.) Maximum Entropy and Bayesian Methods in Applied Statistics, pp. 1–25. Cambridge University Press (1986)Google Scholar
  39. 39.
    Good, I.J.: Weight of Evidence: A Brief Survey. In: Bernardo, J.M., DeGroot, M.H., Lindley, D.V., Smith, A.F.M. (eds.) Bayesian Statistics, pp. 249–269. Elsevier, New York (1985)Google Scholar
  40. 40.
    Lee, M.D., Wagenmakers, E.-J.: A Course in Bayesian Graphical Modeling for Cognitive Science. Convergence 7 (2010)Google Scholar
  41. 41.
    Albert, J.: Bayesian Computation with R. Springer, New York (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michail Tsikerdekis
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations