Advertisement

Abstract

In many economic, social and political situations individuals carry out activities in groups (coalitions) rather than alone and on their own. Examples range from households and sport clubs to research networks, political parties and trade unions. The underlying game theoretic framework is known as coalition formation.

This survey discusses the notion of core stability in hedonic coalition formation (where each player’s happiness only depends on the other members of his coalition but not on how the remaining players outside his coalition are grouped). We present the central concepts and algorithmic approaches in the area, provide many examples, and pose a number of open problems.

Keywords

computational social choice computational complexity coalition formation hedonic game 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkan, A.: Non-existence of stable threesome matchings. Mathematical Social Sciences 16, 207–209 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arkin, E.M., Bae, S.W., Efrat, A., Okamoto, K., Mitchell, J.S.B., Polishchuk, V.: Geometric stable roommates. Information Processing Letters 109, 219–224 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Aziz, H., Brandt, F., Seedig, H.G.: Stable partitions in additively separable hedonic games. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011), pp. 183–190 (2001)Google Scholar
  4. 4.
    Ballester, C.: NP-completeness in hedonic games. Games and Economic Behavior 49, 1–30 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Banerjee, S., Konishi, H., Sönmez, T.: Core in a simple coalition formation game. Social Choice and Welfare 18, 135–153 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Barberà, S., Bossert, W., Pattanaik, P.K.: Ranking sets of objects. In: Barberà, S., Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory, vol. II, pp. 893–977. Kluwer Academic Publishers (2004)Google Scholar
  7. 7.
    Biró, P., McDermid, E.: Three-sided stable matchings with cyclic preferences. Algorithmica 58, 5–18 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bogomolnaia, A., Jackson, M.O.: The stability of hedonic coalition structures. Games and Economic Behavior 38, 201–230 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Boros, E., Gurvich, V., Jaslar, S., Krasner, D.: Stable matchings in three-sided systems with cyclic preferences. Discrete Mathematics 289, 1–10 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    de Bruijn, N.G.: Asymptotic Methods in Analysis. North-Holland, Amsterdam (1958)zbMATHGoogle Scholar
  11. 11.
    Cechlárová, K., Hajduková, J.: Computational complexity of stable partitions with B-preferences. International Journal of Game Theory 31, 353–364 (2002)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cechlárová, K., Hajduková, J.: Stable partitions with W-preferences. Discrete Applied Mathematics 138, 333–347 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cechlárová, K., Romero-Medina, A.: Stability in coalition formation games. International Journal of Game Theory 29, 487–494 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Chebolu, P., Goldberg, L.A., Martin, R.A.: The Complexity of Approximately Counting Stable Matchings. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 81–94. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2001)Google Scholar
  16. 16.
    Danilov, V.I.: Existence of stable matchings in some three-sided systems. Mathematical Social Sciences 46, 145–148 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Darmann, A., Elkind, E., Kurz, S., Lang, J., Schauer, J., Woeginger, G.: Group Activity Selection Problem. In: Goldberg, P.W., Guo, M. (eds.) WINE 2012. LNCS, vol. 7695, pp. 156–169. Springer, Heidelberg (2012)Google Scholar
  18. 18.
    Dimitrov, D., Borm, P., Hendrickx, R., Sung, S.-C.: Simple priorities and core stability in hedonic games. Social Choice and Welfare 26, 421–433 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Drèze, J., Greenberg, J.: Hedonic coalitions: Optimality and stability. Econometrica 48, 987–1003 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Eriksson, K., Sjöstrand, J., Strimling, P.: Three-dimensional stable matching with cyclic preferences. Mathematical Social Sciences 52, 77–87 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Farrell, J., Scotchmer, S.: Partnerships. The Quarterly Journal of Economics 103, 279–297 (1988)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Gale, D., Sotomayor, M.A.O.: Some remarks on the stable matching problem. Discrete Applied Mathematics 11, 223–232 (1994)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  25. 25.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press (1989)Google Scholar
  26. 26.
    Irving, R.W.: An efficient algorithm for the stable roommates problem. Journal of Algorithms 6, 577–595 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Irving, R.W.: Stable marriage and indifference. Discrete Applied Mathematics 48, 261–272 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Irving, R.W., Leather, P.: The complexity of counting stable marriages. SIAM Journal on Computing 15, 655–667 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Irving, R.W., Manlove, D.F.: The stable roommates problem with ties. Journal of Algorithms 43, 85–105 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Irving, R.W., Manlove, D.F., O’Malley, G.: Stable marriage with ties and bounded length preference lists. Journal of Discrete Algorithms 43, 213–219 (2009)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Knuth, D.E.: Mariages stables et leurs relations avec d’autres problèmes combinatoires [Stable marriage and its relation to other combinatorial problems]. CRM Proceedings and Lecture Notes, vol. 10. Les Presses de l’Université de Montréal (1997)Google Scholar
  32. 32.
    Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoretical Computer Science 276, 261–279 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Ng, C., Hirschberg, D.S.: Three-dimensional stable matching problems. SIAM Journal on Discrete Mathematics 4, 245–252 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  35. 35.
    Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the complexity of the V-C dimension. Journal of Computer and System Sciences 53, 161–170 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Ronn, E.: NP-complete stable matching problems. Journal of Algorithms 11, 285–304 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching. Cambridge University Press (1990)Google Scholar
  38. 38.
    Shapley, L.S., Scarf, H.: On cores and indivisibility. Journal of Mathematical Economics 1, 23–37 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Subramanian, A.: A new approach to stable matching problems. SIAM Journal on Computing 23, 671–701 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Sung, S.-C., Dimitrov, D.: On core membership testing for hedonic coalition formation games. Operations Research Letters 35, 155–158 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Sung, S.-C., Dimitrov, D.: Computational complexity in additive hedonic games. European Journal of Operational Research 203, 635–639 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Tamura, A.: Transformation from arbitrary matchings to stable matchings. Journal of Combinatorial Theory A 62, 310–323 (1993)zbMATHCrossRefGoogle Scholar
  43. 43.
    Wagner, K.: Bounded query classes. SIAM Journal on Computing 19, 833–846 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Woeginger, G.J.: A hardness result for core stability in additive hedonic games. Mathematical Social Sciences (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gerhard J. Woeginger
    • 1
  1. 1.Department of Mathematics and Computer ScienceTU EindhovenNetherlands

Personalised recommendations