Advertisement

Mixed Hypergraphs for Linear-Time Construction of Denser Hashing-Based Data Structures

  • Michael Rink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7741)

Abstract

There are several hashing-based data structures whose space utilization (keys per table cells) directly depends on the edge density threshold for the appearance of a 2-core in some underlying random k-uniform hypergraph. We show that by modifying these data structures such that the k-uniform hypergraphs are replaced by certain non-uniform hypergraphs their space utilization can be improved. These non-uniform hypergraphs are a mixture of uniform hypergraphs each with a linear number of edges but with different edge sizes. In the case of two different edge sizes we give a solution for the optimal (expected) number of edges of each size such that the 2-core threshold for the resulting mixed hypergraph is maximized. For suitable edge sizes we obtain optimal thresholds for mixed hypergraphs up to 0.920, improving the maximum 2-core threshold for any random k-uniform hypergraph, which is about 0.818.

Keywords

Space Usage Global Minimum Point Raptor Code Edge Size Rateless Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aumüller, M., Dietzfelbinger, M., Rink, M.: Experimental Variations of a Theoretically Good Retrieval Data Structure. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 742–751. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, Displace, and Compress. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 682–693. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Botelho, F.C., Pagh, R., Ziviani, N.: Simple and Space-Efficient Minimal Perfect Hash Functions. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 139–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier Filter: An Efficient Data Structure for Static Support Lookup Tables. In: Proc. 15th SODA, pp. 30–39 (2004)Google Scholar
  5. 5.
    Cooper, C.: The Cores of Random Hypergraphs with a Given Degree Sequence. Random Struct. Algorithms 25(4), 353–375 (2004)CrossRefGoogle Scholar
  6. 6.
    Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight Thresholds for Cuckoo Hashing via XORSAT. CoRR abs/0912.0287 (2009), http://arxiv.org/abs/0912.0287
  7. 7.
    Dietzfelbinger, M., Goerdt, A., Mitzenmacher, M., Montanari, A., Pagh, R., Rink, M.: Tight Thresholds for Cuckoo Hashing via XORSAT. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 213–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dietzfelbinger, M., Pagh, R.: Succinct Data Structures for Retrieval and Approximate Membership (Extended Abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 385–396. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Fountoulakis, N., Panagiotou, K.: Orientability of Random Hypergraphs and the Power of Multiple Choices. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 348–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Goodrich, M.T., Mitzenmacher, M.: Invertible Bloom Lookup Tables. In: Proc. 49th Communication, Control, and Computing (Allerton), pp. 792–799 (2011)Google Scholar
  11. 11.
    Havas, G., Majewski, B.S., Wormald, N.C., Czech, Z.J.: Graphs, Hypergraphs and Hashing. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 153–165. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  12. 12.
    Kim, J.H.: Poisson cloning model for random graphs. In: Proc. ICM Madrid 2006, vol. III, pp. 873–898 (2006)Google Scholar
  13. 13.
    Luby, M.: LT Codes. In: Proc. 43rd FOCS, p. 271 (2002)Google Scholar
  14. 14.
    Luby, M., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A.: Efficient Erasure Correcting Codes. IEEE Transactions on Information Theory 47(2), 569–584 (2001)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Luby, M., Mitzenmacher, M., Shokrollahi, M.A., Spielman, D.A., Stemann, V.: Practical Loss-Resilient Codes. In: Proc. 29th STOC, pp. 150–159 (1997)Google Scholar
  16. 16.
    Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J.: A Family of Perfect Hashing Methods. Comput. J. 39(6), 547–554 (1996)CrossRefGoogle Scholar
  17. 17.
    Maymounkov, P.: Online codes (Extended Abstract). Tech. Rep. TR2002-833, New York University (2002)Google Scholar
  18. 18.
    Molloy, M.: The pure literal rule threshold and cores in random hypergraphs. In: Proc. 15th SODA, pp. 672–681 (2004)Google Scholar
  19. 19.
    Rink, M.: On Thresholds for the Appearance of 2-cores in Mixed Hypergraphs. CoRR abs/1204.2131 (2012), http://arxiv.org/abs/1204.2131
  20. 20.
    Shokrollahi, A.: Raptor Codes. IEEE Transactions on Information Theory 52(6), 2551–2567 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michael Rink
    • 1
  1. 1.Fakultät für Informatik und AutomatisierungTechnische Universität IlmenauGermany

Personalised recommendations