Advertisement

Abstract

For many applications, the data sets to be processed grow much faster than can be handled with the traditionally available algorithms. We therefore have to come up with new, dramatically more scalable approaches. In order to do that, we have to bring together know-how from the application, from traditional algorithm theory, and on low level aspects like parallelism, memory hierarchies, energy efficiency, and fault tolerance. The methodology of algorithm engineering with its emphasis on realistic models and its cycle of design, analysis, implementation, and experimental evaluation can serve as a glue between these requirements. This paper outlines the general challenges and gives examples from my work like sorting, full text indexing, graph algorithms, and database engines.

Keywords

Fault Tolerance Memory Hierarchy Parallel Disk Disk Array Array Construction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contraction Hierarchies and Approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 166–177. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Beckmann, A., Meyer, Sanders, P., Singler, J.: Energy-efficient sorting using solid state disks. In: 1st International Green Computing Conference, pp. 191–202. IEEE (2010)Google Scholar
  3. 3.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Dementiev, R., Kärkkäinen, J., Mehnert, J., Sanders, P.: Better external memory suffix array construction. Special issue on Alenex 2005. ACM Journal of Experimental Algorithmics 12 (2008)Google Scholar
  5. 5.
    Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using contraction hierarchies. Transportation Science (2012)Google Scholar
  6. 6.
    Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction. Journal of the ACM 53(6), 1–19 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kulla, F., Sanders, P.: Scalable Parallel Suffix Array Construction. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp. 22–29. Springer, Heidelberg (2006); Parallel Computing 33, 605–612 (2007)CrossRefGoogle Scholar
  8. 8.
    Osipov, V., Sanders, P., Schulz, C.: Engineering Graph Partitioning Algorithms. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 18–26. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Rahn, M., Sanders, P., Singler, J.: Scalable distributed-memory external sorting. In: 26th IEEE International Conference on Data Engineering, pp. 685–688 (2010)Google Scholar
  10. 10.
    Sanders, P.: Reconciling simplicity and realism in parallel disk models. Special Issue on Parallel Data Intensive Algorithms and Applications. Parallel Computing 28(5), 705–723 (2002)Google Scholar
  11. 11.
    Sanders, P.: Asynchronous scheduling of redundant disk arrays. IEEE Transactions on Computers 52(9), 1170–1184 (2003); Short version in 12th ACM Symposium on Parallel Algorithms and Architectures, pp. 89–98 (2000)Google Scholar
  12. 12.
    Sanders, P.: Algorithms for Scalable Storage Servers. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 82–101. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Sanders, P., Egner, S., Korst, J.: Fast concurrent access to parallel disks. Algorithmica 35(1), 21–55 (2003); Short version in 11th SODA, pp. 849–858 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Peter Sanders
    • 1
  1. 1.Karlsruhe Institute of TechnologyGermany

Personalised recommendations