Supporting Tabular Data Characterization in a Large Scale Data Infrastructure by Lexical Matching Techniques

  • Leonardo Candela
  • Gianpaolo Coro
  • Pasquale Pagano
Part of the Communications in Computer and Information Science book series (CCIS, volume 354)


Digital Libraries continue to evolve towards research environments supporting access and management of multiform Information Objects spread across multiple data sources and organizational domains. This evolution has introduced the need to deal with Information Objects having traits different from those characterizing Digital Libraries at their early stages and to revise the services supporting their management. Tabular data represent a class of Information Objects that require to be efficiently managed because of their core role in many eScience scenarios. This paper discusses the tabular data characterization problem, i.e., the problem of identifying the reference dataset of any column of the dataset. In particular, the paper presents an approach based on lexical matching techniques to support users during the data curation phase by providing them with a ranked list of reference datasets suitable for a dataset column.


tabular data management data curation large-scale data infrastructure lexical similarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International Journal on Semantic Web & Information Systems 5(3), 1–22 (2009)CrossRefGoogle Scholar
  2. 2.
    Blanke, T., Candela, L., Hedges, M., Priddy, M., Simeoni, F.: Deploying general-purpose virtual research environments for humanities research. Philosophical Transactions of the Royal Society A 368, 3813–3828 (2010)CrossRefGoogle Scholar
  3. 3.
    Borgman, C.: Research data: Who will share what, with whom, when, and why? In: China-North America Library Conference, Beijing (2010)Google Scholar
  4. 4.
    Borgman, C.: The Conundrum of Sharing Research Data. Journal of the American Society for Information Science and Technology, 1–40 (2011)Google Scholar
  5. 5.
    Candela, L., Akal, F., Avancini, H., Castelli, D., Fusco, L., Guidetti, V., Langguth, C., Manzi, A., Pagano, P., Schuldt, H., Simi, M., Springmann, M., Voicu, L.: DILIGENT: integrating Digital Library and Grid Technologies for a new Earth Observation Research Infrastructure. International Journal on Digital Libraries 7(1-2), 59–80 (2007)CrossRefGoogle Scholar
  6. 6.
    Candela, L., Castelli, D., Pagano, P.: History, Evolution and Impact of Digital Libraries. In: Iglezakis, I., Synodinou, T.-E., Kapidakis, S. (eds.) E-Publishing and Digital Libraries: Legal and Organizational Issues, ch. 1, pp. 1–30. IGI Global (2011)Google Scholar
  7. 7.
    Candela, L., Castelli, D., Pagano, P., Simi, M.: From Heterogeneous Information Spaces to Virtual Documents. In: Fox, E.A., Neuhold, E.J., Premsmit, P., Wuwongse, V. (eds.) ICADL 2005. LNCS, vol. 3815, pp. 11–22. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Castelli, D.: D4Science-II - An e-Infrastructure Ecosystem for Science. ERCIM News 79, 9 (2009)Google Scholar
  9. 9.
    Crane, G., Babeu, A., Bamman, D.: eScience and the humanities. International Journal on Digital Libraries 7(1-2), 117–122 (2007)CrossRefGoogle Scholar
  10. 10.
    Gorp, P.V., Mazanek, S.: SHARE: a web portal for creating and sharing executable research papers. Procedia CS 4, 589–597 (2011)CrossRefGoogle Scholar
  11. 11.
    Hamming, R.W.: Error detecting and error correcting codes. Bell System Technical Journal 29(2), 147–160 (1950)MathSciNetGoogle Scholar
  12. 12.
    Hey, T., Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research (2009)Google Scholar
  13. 13.
    Jaro, M.A.: Advances in record linkage methodology as applied to the 1985 census of tampa florida. Journal of the American Statistical Society 84(406), 414–420 (1989)Google Scholar
  14. 14.
    Krause, E.F.: Taxicab Geometry. Dover Publications (1987)Google Scholar
  15. 15.
    Lave, J., Wenger: Situated Learning: Legitimate Peripheral Participation. Cam (1991)Google Scholar
  16. 16.
    Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetGoogle Scholar
  17. 17.
    National Archives and Records Administration. The Soundex Indexing System (2007)Google Scholar
  18. 18.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)CrossRefGoogle Scholar
  19. 19.
    Nowakowski, P., Ciepiela, E., Harezlak, D., Kocot, J., Kasztelnik, M., Bartynski, T., Meizner, J., Dyk, G., Malawski, M.: The collage authoring environment. Procedia CS 4, 608–617 (2011)CrossRefGoogle Scholar
  20. 20.
    Roure, D.D., Goble, C.A., Stevens, R.: The design and realisation of the myexperiment virtual research environment for social sharing of workflows. Future Generation Comp. Syst. 25(5), 561–567 (2009)CrossRefGoogle Scholar
  21. 21.
    Shen, R., Vemuri, N.S., Fan, W., Fox, E.A.: Integration of complex archaeology digital libraries: An ETANA-DL experience. Information Systems 33(7-8), 699–723 (2008)CrossRefGoogle Scholar
  22. 22.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)CrossRefGoogle Scholar
  23. 23.
    Stapleton, L.K.: Taming Big Data. IBM Data Management Magazine 16(2), 12–18 (2011)MathSciNetGoogle Scholar
  24. 24.
    Wallis, J.C., Mayernik, M.S., Borgman, C.L., Pepe, A.: Digital libraries for scientific data discovery and reuse: from vision to practical reality. In: Proceedings of the 10th Annual Joint Conference on Digital Libraries, JCDL 2010, pp. 333–340. ACM, New York (2010)CrossRefGoogle Scholar
  25. 25.
    Wenger, E.: Communities of Practice: Learning, Meaning and Identity. Cambridge University Press (1998)Google Scholar
  26. 26.
    Winkler, W.E.: String Comparator Metrics and Enhanced Decision Rules in the Fellegi-Sunter Model of Record Linkage. In: Proceedings of the Section on Survey Research Methods (American Statistical Association), pp. 354–359 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Leonardo Candela
    • 1
  • Gianpaolo Coro
    • 1
  • Pasquale Pagano
    • 1
  1. 1.Istituto di Scienza e Tecnologie dell’Informazione “Alessandro Faedo”Consiglio Nazionale delle RicerchePisaItaly

Personalised recommendations