SuperSense Tagging with a Maximum Entropy Markov Model

  • Giuseppe Attardi
  • Luca Baronti
  • Stefano Dei Rossi
  • Maria Simi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7689)


We tackled the task of SuperSense tagging by means of the Tanl Tagger, a generic, flexible and customizable sequence labeler, developed as part of the Tanl linguistic pipeline. The tagger can be configured to use different classifiers and to extract features according to feature templates expressed through patterns, so that it can be adapted to different tagging tasks, including PoS and Named Entity tagging. The tagger operates in a Markov chain, using a statistical classifier to infer state transitions and dynamic programming to select the best overall sequence of tags. We exploited the extensive customization capabilities of the tagger in order to tune it for the task of SuperSense tagging, by performing an extensive process of feature selection. The resulting configuration achieved the best scores in the closed subtask.


SuperSense Tagging Word Net Maximum Entropy Maximum Entropy Markov Model MEMM dynamic programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attardi, G., Dei Rossi, S., Di Pietro, G., Lenci, A., Montemagni, S., Simi, M.: A Resource and Tool for SuperSense Tagging of Italian Texts. In: Proceedings of 7th Language Resources and Evaluation Conference (LREC 2010), Malta, pp. 17–23 (2010)Google Scholar
  2. 2.
    Attardi, G., Dei Rossi, S., Simi, M.: The Tanl Pipeline. In: Proceedings of Workshop on Web Services and Processing Pipelines in HLT, Malta (2010)Google Scholar
  3. 3.
    Basile, P.: Super-Sense Tagging using support vector machines and distributional features. In: Working Notes of Evalita 2011, Rome, Italy (January 2012) ISSN 2240-5186Google Scholar
  4. 4.
    Chieu, H.L., Ng, H.T.: Named Entity Recognition with a Maximum Entropy Approach. In: Proceedings of CoNLL 2003, Edmonton, Canada, pp. 160–163 (2003)Google Scholar
  5. 5.
    Ciaramita, M., Altun, Y.: Broad-Coverage Sense Disambiguation and Information Extraction with a Supersense Sequence Tagger. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing EMNLP, pp. 594–602 (2006)Google Scholar
  6. 6.
    Darroch, J.N., Ratcliff, D.: Generalized Iterative Scaling for Log-Linear Models. Annals of Mathematical Statistics 43(5), 1470–1480 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing Features of Random Fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 380–393 (1997)CrossRefGoogle Scholar
  8. 8.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  9. 9.
    Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization methods. Mathematical Programming 45, 503–528 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    McCallum, A., Freitag, D., Pereira, F.: Maximum Entropy Markov Models for Information Extraction and Segmentation. In: Proc. ICML 2000, pp. 591–598 (2001)Google Scholar
  11. 11.
    Montemagni, S., et al.: Building the Italian Syntactic-Semantic Treebank. In: Abeillé (ed.) Building and using Parsed Corpora, Language and Speech Series, pp. 189–210. Kluwer, Dordrecht (2003)Google Scholar
  12. 12.
    Picca, D., Gliozzo, A., Ciaramita, M.: SuperSense Tagger for Italian. In: Proceedings of LREC 2008, Marrakech (2008)Google Scholar
  13. 13.
    Roventini, A., Alonge, A., Calzolari, N., Magnini, B., Bertagna, F.: ItalWordNet: a Large Semantic Database for Italian. In: Proceedings of LREC 2000, Athens (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giuseppe Attardi
    • 1
  • Luca Baronti
    • 1
  • Stefano Dei Rossi
    • 1
  • Maria Simi
    • 1
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations