Hierarchical Self-Optimization of SaaS Applications in Clouds

Part of the Lecture Notes in Computer Science book series (LNCS, volume 7475)


This chapter introduces a framework and a methodology to manage a SaaS application on top of a PaaS infrastructure. This framework utilizes PaaS policy sets to implement the SaaS provider’s elasticity policy for its application server tier. Adaptation is based on strategy-trees, which allow for systematic capture, representation and reasoning about adaptation variability, based on hierarchically organizing different levels of temporal granularity. Thus, a strategy-tree is utilized at the SaaS layer to actively guide policy set selection at runtime in order to maintain alignment with the SaaS provider’s business objectives. This way, the SaaS provider’s attitudes and preferences reflecting their general business needs are incorporated into the adaptation mechanism in an organized and accessible manner. Results from an experiment conducted on a real cloud are presented in support of this approach.


Cloud Computing Leaf Node Policy Rule Type Node Service Level Agreement Violation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arlitt, M., Jin, T.: A workload characterization study of the 1998 world cup web site. IEEE Network 14(3), 30–37 (2000)CrossRefGoogle Scholar
  2. 2.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley view of cloud computing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California, Berkeley (February 2009)Google Scholar
  3. 3.
    Bahati, R.M., Bauer, M.A.: Towards adaptive policy-based management. In: NOMS, pp. 511–518 (2010)Google Scholar
  4. 4.
    Bandara, A., Lupu, E., Moffett, J., Russo, A.: A goal-based approach to policy refinement. In: Proceedings of Fifth IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY 2004, pp. 229–239 (2004)Google Scholar
  5. 5.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP 2003: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 164–177. ACM, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Barna, C., Litoiu, M., Ghanbari, H.: Autonomic load-testing framework. In: 2011 International Conference on Autonomic Computing. ACM, New York (2011)Google Scholar
  7. 7.
    Bartolini, C., Stefanelli, C., Tortonesi, M.: Symian: Analysis and performance improvement of the it incident management process. IEEE Transactions on Network and Service Management 7(3), 132–144 (2010)CrossRefGoogle Scholar
  8. 8.
    Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Comp. Syst. 25(6), 599–616 (2009)CrossRefGoogle Scholar
  9. 9.
    Cheng, S.W., Garlan, D.: Stitch: A language for architecture-based self-adaptation (submitted for publication, 2012)Google Scholar
  10. 10.
    Craven, R., Lobo, J., Lupu, E., Russo, A., Sloman, M.: Decomposition techniques for policy refinement. In: 2010 International Conference on Network and Service Management (CNSM), pp. 72–79 (October 2010)Google Scholar
  11. 11.
    Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Garlan, D., Cheng, S., Huang, A., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)CrossRefGoogle Scholar
  13. 13.
    Ghanbari, H., Simmons, B., Litoiu, M., Iszlai, G.: Exploring alternative approaches to implement an elasticity policy. In: 2011 IEEE International Conference on Cloud Computing (CLOUD), pp. 716–723 (July 2011)Google Scholar
  14. 14.
    Gong, Z., Gu, X., Wilkes, J.: Press: Predictive elastic resource scaling for cloud systems. In: 2010 International Conference on Network and Service Management (CNSM), pp. 9–16 (2010)Google Scholar
  15. 15.
    Hayes, B.: Cloud computing. Commun. ACM 51(7), 9–11 (2008)CrossRefGoogle Scholar
  16. 16.
    Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing policies. In: POLICY 2004: Proceedings of the 5th IEEE International Workshop on Policies for Distributed Systems and Networks, pp. 3–12. IEEE Computer Society (June 2004)Google Scholar
  17. 17.
    Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E., Mylopoulos, J.: On goal-based variability acquisition and analysis. In: Proceedings of the 14th IEEE International Requirements Engineering Conference (RE 2006). IEEE Computer Society, Minneapolis (2006)Google Scholar
  19. 19.
    Litoiu, M., Woodside, M., Wong, J., Ng, J., Iszlai, G.: A business driven cloud optimization architecture. In: 25th Symposium on Applied Computing. ACM (March 2010)Google Scholar
  20. 20.
    Mell, P., Grance, T.: The nist definition of cloud computing (2009)Google Scholar
  21. 21.
    Moore, B.: Policy core information model (pcim) extensions, rfc 3460 (January 2003)Google Scholar
  22. 22.
    Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring alternatives during requirements analysis. IEEE Software 18(1), 92–96 (2001)CrossRefGoogle Scholar
  23. 23.
    Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M., Montero, R., Wolfsthal, Y., Elmroth, E., Caceres, J., Ben-Yehuda, M., Emmerich, W., Galan, F.: The reservoir model and architecture for open federated cloud computing. IBM Journal of Research and Development 53(4), 4:1 –4:11 (2009)Google Scholar
  24. 24.
    Rubio-Loyola, J., Charalambides, M., Aib, I., Serrat, J., Pavlou, G., Boutaba, R.: Business-driven management of differentiated services. In: 2010 IEEE Network Operations and Management Symposium (NOMS), pp. 240–247 (2010)Google Scholar
  25. 25.
    Rubio-Loyola, J., Serrat, J., Charalambides, M., Flegkas, P., Pavlou, G.: A methodological approach toward the refinement problem in policy-based management systems. IEEE Communications Magazine 44(10), 60–68 (2006)CrossRefGoogle Scholar
  26. 26.
    Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a formal semantics. In: IEEE International Conference on Requirements Engineering, pp. 139–148 (2006)Google Scholar
  27. 27.
    Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness requirements for adaptive systems. In: Proceedings of the 6th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2011, pp. 60–69. ACM, New York (2011)Google Scholar
  28. 28.
    Simmons, B.: Strategy-Trees: A Novel Approach To Policy-Based Management. Ph.D. thesis, The University of Western Ontario (2010)Google Scholar
  29. 29.
    Simmons, B., Litoiu, M., Ionescu, D., Iszlai, G.: Towards a cloud optimization architecture using strategy-trees. In: I2TS 2010: Proceedings 9th International Information and Telecommunication Technologies Symposium, Rio de Janeiro, Brazil, December 13-15 (2010)Google Scholar
  30. 30.
    Simmons, B., Lutfiyya, H.: Strategy-Trees: A Feedback Based Approach to Policy Management. In: van der Meer, S., Burgess, M., Denazis, S. (eds.) MACE 2008. LNCS, vol. 5276, pp. 26–37. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Simmons, B., Lutfiyya, H.: Achieving High-Level Directives Using Strategy-Trees. In: Strassner, J.C., Ghamri-Doudane, Y.M. (eds.) MACE 2009. LNCS, vol. 5844, pp. 44–57. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.York UniversityTorontoCanada
  2. 2.Toronto Software Lab.IBMMarkhamCanada

Personalised recommendations