Modeling Ontological Structures with Type Classes in Coq

  • Richard Dapoigny
  • Patrick Barlatier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7735)


In the domain of ontology design as well as in Conceptual Modeling, representing universals is a challenging problem. Most approaches which have addressed this problem rely either on Description Logics (DLs) or on First Order Logic (FOL), but many difficulties remain especially about expressiveness. In mathematical logic and program checking, type theories have proved to be appealing but so far, they have not been applied in the formalization of ontologies. To bridge this gap, we present here the main capabilities of a theory for representing ontological structures in a dependently-typed framework which relies both on a constructive logic and on a functional type system. The usability of the theory is demonstrated with the Coq language which defines in a precise way what ontological primitives such as classes, relations, properties and meta-properties, are in terms of type classes.


Description Logic Type Theory Type Class Dependent Type Ontological Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alia, I., Abdelmoty, A.I., Smart, P.D., Jones, C.B., Fu, G., Finch, D.: A critical evaluation of ontology languages for geographic information retrieval on the Internet. Journal of Visual Languages & Computing 16(4), 331–358 (2005)CrossRefGoogle Scholar
  2. 2.
    Barlatier, P., Dapoigny, R.: A Type-Theoretical Approach for Ontologies: the Case of Roles. Applied Ontology 73, 311–356 (in press, 2012)Google Scholar
  3. 3.
    Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS series. Springer (2004)Google Scholar
  4. 4.
    Bodenreider, O., Smith, B., Kumar, A., Burgun, A.: Investigating subsumption in SNOMED CT: An exploration into large description logic-based biomedical terminologies. Artificial Intelligence in Medicine 39, 183–195 (2007)CrossRefGoogle Scholar
  5. 5.
    Booch, G.: Object-Oriented Design with Applications. Benjamin Cummings, Redwood City (1991)Google Scholar
  6. 6.
    Bourbaki, N.: Univers, Séminaire de Géométrie Algébrique du Bois Marie Théorie des topos et cohomologie étale des schémas (SGA 4), 1. Lecture notes in mathematics, vol. 269, pp. 185–217. Springer (1972)Google Scholar
  7. 7.
    Chein, M., Mugnier, M.L., Simonet, G.: Nested graphs: a graph-based knowledge representation model with FOL semantics. In: Procs. of KR 1998, pp. 524–534. Morgan Kaufmann (1998)Google Scholar
  8. 8.
    Cirstea, H., Coquery, E., Drabent, W., Fages, F., Kirchner, C., Maluszynski, J., Wack, B.: Types for Web Rule Languages: a preliminary study. Technical report A04-R-560, PROTHEO - INRIA Lorraine - LORIA (2004)Google Scholar
  9. 9.
    Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Coq Development Team, The Coq Reference Manual, Version 8.3., INRIA, France (2010)Google Scholar
  11. 11.
    Dapoigny, R., Barlatier, P.: Towards Ontological Correctness of Part-whole Relations with Dependent Types. In: Procs. of the Sixth Int. Conference (FOIS 2010), pp. 45–58 (2010a)Google Scholar
  12. 12.
    Dapoigny, R., Barlatier, P.: Modeling Contexts with Dependent Types. Fundamenta Informaticae 104(4), 293–327 (2010b)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Proc. of Ninth Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2004), pp. 141–151. AAAI Press (2004)Google Scholar
  14. 14.
    Angelov, K., Enache, R.: Typeful Ontologies with Direct Multilingual Verbalization. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 1–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.: Sweetening Ontologies with DOLCE. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 166–181. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Guarino, N.: The Ontological Level. In: Casati, R., Smith, B., White, G. (eds.) Philosophy and the Cognitive Science, pp. 443–456. Holder-Pivhler-Tempsky (1994)Google Scholar
  17. 17.
    Guarino, N., Welty, C.: An Overview of OntoClean. In: Handbook on Ontologies, pp. 151–172 (2004)Google Scholar
  18. 18.
    Guarino, N.: The Ontological Level: Revisiting 30 Years of Knowledge Representation. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 52–67. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Guizzardi, G., Herre, H., Wagner, G.: On the General Ontological Foundations of Conceptual Modeling. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 65–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. University of Twente (Centre for Telematics and Information Technology) (2005)Google Scholar
  21. 21.
    Guizzardi, G., Masolo, C., Borgo, S.: In Defense of a Trope-Based Ontology for Conceptual Modeling: An Example with the Foundations of Attributes, Weak Entities and Datatypes. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 112–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Howard, W.A.: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. The formulae-as-types notion of construction, pp. 479–490. Academic Press (1980)Google Scholar
  23. 23.
    Kabbaj, A., Janta-Polczynski, M.: From PROLOG+ + to PROLOG+CG: A CG Object-Oriented Logic Programming Language, B. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI), vol. 1867, pp. 540–554. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Kaneiwa, K., Mizoguchi, R.: Ontological Knowledge Base Reasoning with Sort-Hierarchy and Rigidity. In: Procs. of KR 2004, pp. 278–288. AAAI Press (2004)Google Scholar
  25. 25.
    Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole relations. Applied Ontology 3(1-2), 91–110 (2008)Google Scholar
  26. 26.
    Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based languages. Journal of the ACM 42, 741–843 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Krötzsch, M., et al.: How to reason with OWL in a logic programming system. In: Procs. of RuleML 2006 (2006)Google Scholar
  28. 28.
    Luo, Z.: Coercive subtyping. Journal of Logic and Computation 9(1), 105–130 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library (D18). Laboratory for Applied Ontology-ISTC-CNR (2003)Google Scholar
  30. 30.
    McKinna, J.: Why dependent types matter. In: Procs. of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, vol. 41(1), p. 1 (2006)Google Scholar
  31. 31.
    Mugnier, M.L., Leclère, M.: On querying simple conceptual graphs with negation. Data & Knowledge engineering 60(3), 468–493 (2007)CrossRefGoogle Scholar
  32. 32.
    Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: Representing Knowledge About Information Systems. ACM Trans. on Information Systems 8(4), 325–362 (1990)CrossRefGoogle Scholar
  33. 33.
    Napoli, A.: Subsumption and classification-based reasoning in object-based representations. In: Procs. of the 10th European Conference on Artificial Intelligence (ECAI 1992), pp. 425–429. John Wiley & Sons Ltd. (1992)Google Scholar
  34. 34.
    Noonan, H.: Identity. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (2011),
  35. 35.
    Pires, L.F., van Sinderen, M., Munthe-Kaas, E., Prokaev, S.M.H., Plas, D.J.: Techniques for describing and manipulating context information, Freeband/A MUSE D3.5v2.0, Lucent Technologies (2005)Google Scholar
  36. 36.
    Paulin-Mohring, C.: Inductive Definitions in the System Coq - Rules and Properties. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 328–345. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  37. 37.
    Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog. In: Proc. of Tenth Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 68–78. AAAI Press (2006)Google Scholar
  38. 38.
    Saibi, A.: Typing algorithm in type theory with inheritance. In: Procs. of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1997), pp. 292–301. ACM Press (1997)Google Scholar
  39. 39.
    Setzer, A.: Object-Oriented Programming in Dependent Type Theory. In: Trends in Functional Programming, Intellect, vol. 7, pp. 91–108 (2007)Google Scholar
  40. 40.
    Smith, B., Rosse, C.: The Role of Foundational Relations in the Alignment of Biomedical Ontologies. In: Fieschi, M., et al. (eds.) MEDINFO 2004. IOS Press, Amsterdam (2004)Google Scholar
  41. 41.
    Sozeau, M., Oury, N.: First-Class Type Classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 278–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  42. 42.
    Sowa, J.F.: Using a lexicon of canonical graphs in a semantic interpreter. Relational models of the lexicon, pp. 113–137. Cambridge University Press (1988)Google Scholar
  43. 43.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  44. 44.
    Sowa, J.F.: Conceptual Graphs. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, ch. 5, pp. 213–237. Elsevier (2008)Google Scholar
  45. 45.
    Spitters, B., van der Weegen, E.: Type classes for mathematics in type theory. Mathematical Structures in Computer Science 21(4), 795–825 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Werner, B.: On the strength of proof-irrelevant type theories. Logical Methods in Computer Science 4(3) (2008)Google Scholar
  47. 47.
    Woods, W.A.: Understanding Subsumption and Taxonomy: a Framework for progress. In: Sowa, J. (ed.) Principles of Semantic Networks, pp. 45–94. Morgan Kaufmann (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Richard Dapoigny
    • 1
  • Patrick Barlatier
    • 1
  1. 1.LISTIC/Polytech’Annecy-ChambéryUniversity of SavoieAnnecy-le-vieux cedexFrance

Personalised recommendations