Break-Up Analysis: A Method to Regain Trust in Business Transactions

  • Bruno Maria FranceschettiEmail author
  • Claudia Koschtial
  • Carsten Felden
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 3)


The financial crisis resulted in a loss of trust; not only within the investment or banking sector, but in general between creditors and debtors, because many organizations faced insolvency. Such a financial situation can even result in a company’s bankruptcy. Therefore it is necessary to get a realistic understanding of the solvency or the possible insolvency of a company. The support of a decision on a debtor’s creditability is not yet sufficiently provided by the most prominent method (Altman’s Z’’-score). The paper presents a procedure called Break-Up Analysis (BUA). It helps to decide on the solvency of a company. The comparison of the BUA to Altman’s Z’’-score shows an improvement of the identification of solvent and insolvent companies by 22 %. The BUA enables herewith to regain trust in business transaction by not identifying only the insolvent companies but the solvent ones as well.


Solvency  Bankruptcy  Bankruptcy prediction model Financial data analysis  Break-Up analysis  Z-score  


  1. 1.
    Beckert, J.: Die Finanzkrise ist auch eine Vertrauenskrise. In: MPIfG Jahrbuch 2011–2012, Max-Planck-Institut für Gesellschaftsforschung, pp. 35–40 (2010)Google Scholar
  2. 2.
    Frankel, T.: Trust, honesty and ethics in business. Finance Common Good/Bien Commun. 2–3, 87–93 (2009)Google Scholar
  3. 3.
    Tomasic, R., Akinbami, F.: The role of trust in maintaining the resilience of financial markets. J. Corp. Law Stud. 11, 369–394 (2011)CrossRefGoogle Scholar
  4. 4.
    Agarwal, V., Taffler, R.J.: Twenty-five years of the Taffler z-score model: does it really have predictive ability? Acc. Bus. Res. 37, 285–300 (2007)CrossRefGoogle Scholar
  5. 5.
    Agarwal, V., Taffler, R.J.: Twenty-Five Years of the Z-Scores in the UK: Do They Really Work? Working paper. AAA National Conference, Cranfield University, Bedfordshire, England (2006)Google Scholar
  6. 6.
    Hayes, S.K., Hodge, K.A., Hughes, L.W.: A study of the efficacy of Altman’s Z to predict bankruptcy of specialty retail firms doing business in contemporary times. Econ. Bus. J.: Inquiries Perspect 3, 122–134 (2010)Google Scholar
  7. 7.
    Perez, M.: Artificial neural networks and bankruptcy forecasting: a state of the art. Neural Comput. Appl. 15, 154–163 (2006)CrossRefGoogle Scholar
  8. 8.
    Peat, M., Jones, S.: Using neural nets to combine information sets in corporate bankruptcy prediction. Intell. Syst. Acc., Finance Manag. 19, 90–101 (2012)CrossRefGoogle Scholar
  9. 9.
    Agarawal, V., Taffler, R.: Comparing the performance of market-based and accounting-based bankruptcy prediction models. J. Bank Finance 32, 1541–1551 (2008)CrossRefGoogle Scholar
  10. 10.
    Begley, J., Ming, J., Watts, S.: Bankruptcy classification errors in the 1980s: an empirical analysis of Altman’s and Ohlson’s models. Rev. Acc. Stud. 1, 267–284 (1996)CrossRefGoogle Scholar
  11. 11.
    Grice, J.S., Ingram, R.W.: Tests of the generalizability of Altman’s bankruptcy prediction model. J. Bus. Res. 54, 53–61 (2001)CrossRefGoogle Scholar
  12. 12.
    Joy, M.O., Tollefson, J.O.: On the financial applications of discriminant analysis. J. Financ Quant. Anal. 10, 723–739 (1975)CrossRefGoogle Scholar
  13. 13.
    Moriarity, S.: Comunicating financial information through multidimensional graphics. J. Acc. Res. 17, 205–224 (1979)CrossRefGoogle Scholar
  14. 14.
    Moyer, C.R.: Forecasting financial failure: a re-examination. Financ Manage. 6, 11–17 (1977)CrossRefGoogle Scholar
  15. 15.
    Ohlson, J.A.: Financial ratios and the probabilistic prediction of bankruptcy. J. Acc. Res. 18, 109–131 (1980)CrossRefGoogle Scholar
  16. 16.
    Shumway, T.: Forecasting bankruptcy more accurately: a simple Hazard model. J. Bus. 74, 101–124 (2001)CrossRefGoogle Scholar
  17. 17.
    Yeh, M.F., Chang, C.T., Leu, M.S.: Financial distress prediction model via grey ART network and grey model. Adv. Neural Netw. Res. Appl. 67, 91–100 (2010)CrossRefGoogle Scholar
  18. 18.
    Altman, E.I.: Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Finance 23, 589–609 (1968)CrossRefGoogle Scholar
  19. 19.
    Marchi, L.: I Sistemi Informativi Aziendali. Giuffrè, Milano (2003)Google Scholar
  20. 20.
    Sutton, S.G., Arnold, V.: Researching Accounting as an Information Systems Discipline. American Accounting Association, Sarasota (2002)Google Scholar
  21. 21.
    Beaver, W.H.: Financial ratios as predictors of failure, empirical research in accounting: selected studies. J. Acc. Res. 4, 71–111 (1966)CrossRefGoogle Scholar
  22. 22.
    Appetiti, A.: Identifying unsound firms in Italy: an attempt to use trend variables. J. Bank. Finance 8, 269–279 (1984)CrossRefGoogle Scholar
  23. 23.
    Martin, D.: Early warning of bank failures: A logit regression approach. J. Bank. Finance 1, 249–276 (1977)CrossRefGoogle Scholar
  24. 24.
    Gentry, J., Newbold, P., Whitford, D.: Classifying bankrupt firms with funds flow components. J. Acc. Res. 23, 146–160 (1985)CrossRefGoogle Scholar
  25. 25.
    Zmijewski, M.E.: Methodological issues related to the estimation of financial distress prediction models. J. Acc. Res. 22, 59–82 (1984)CrossRefGoogle Scholar
  26. 26.
    Meyer, P.A., Pifer, H.W.: Prediction of bank failures. J. Finance 25, 853–868 (1970)CrossRefGoogle Scholar
  27. 27.
    Bellovary, J.L., Giacomino, D.E., Akers, M.D.: A review of bankruptcy prediction studies: 1930 to present. J. Financ. Educ. 33, 1–43 (2007)Google Scholar
  28. 28.
    Dimitras, A., Zanakis, S., Zopounidis, C.: A survey of business failures with an emphasis on prediction methods and industrial applications. Eur. J. Oper. Res. 90, 487–513 (1996)CrossRefGoogle Scholar
  29. 29.
    Messier Jr., W., Hansen, J.: Inducing rules for expert system development: An example using default and bankruptcy data. Manag. Sci. 34, 1403–1415 (1988)CrossRefGoogle Scholar
  30. 30.
    Tam, K.: Neural network models and the prediction of bank bankruptcy. Omega 19, 429–445 (1991)CrossRefGoogle Scholar
  31. 31.
    Wang, L., Zeng, Y., Zhang, J., Huang, W., Bao, Y.: The criticality of spare parts evaluating model using artificial neural network approach. Computational science. In: Alexandrov, V.N., Albada, G.D., Sloot, P.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 728–735. Springer, Heidelberg (2006)Google Scholar
  32. 32.
    Min, J.H., Jeong, C.: A binary classification method for bankruptcy prediction. Expert Syst. Appl. 36, 5256–5263 (2009)CrossRefGoogle Scholar
  33. 33.
    Min, S.H., Lee, J., Han, I.: Hybrid genetic algorithms and support vector machines for bankruptcy prediction. Expert Syst. Appl. 31, 652–660 (2006)CrossRefGoogle Scholar
  34. 34.
    Brezigar, A., Masten, I.: CART-based selection of bankruptcy predictors for the logit model. Expert Syst. Appl. 39, 10153–10159 (2012)CrossRefGoogle Scholar
  35. 35.
    Wu, C.H., Tzeng, G.H., Goo, Y.J., Fang, W.C.: A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Syst. Appl. 32, 397–408 (2007)CrossRefGoogle Scholar
  36. 36.
    Li, H., Sun, J., Wu, J.: Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods. Expert Syst. Appl. 37, 5895–5904 (2010)CrossRefGoogle Scholar
  37. 37.
    Mukhopadhyay, A., Tiwari, S., Narsaria, A., Karmaker, B.R.: A new approach to predicting bankruptcy: combining DEA and multi-layer perception. Int. J. Comput. Sci. Issues 9, 71–78 (2012)Google Scholar
  38. 38.
    Aziz, M.A., Dar, H.A.: Predicting corporate bankruptcy: Whither do we stand? Corp. Gov. 6, 18–33 (2006)CrossRefGoogle Scholar
  39. 39.
    Aziz, M.A., Dar, H.A.: Predicting Corporate Bankruptcy: Whither Do We Stand? Economic research papers, no. 04-01, Loughborough University (United Kingdom) (2004)Google Scholar
  40. 40.
    Booth, P.J.: Decomposition measure and the prediction of financial failure. J. Bus. Finance Acc. 10, 67–82 (1983)CrossRefGoogle Scholar
  41. 41.
    Lev, B.: Decomposition measures for financial analysis. Financ. Manage. 2, 56–63 (1973)CrossRefGoogle Scholar
  42. 42.
    Theil, H.: On the use of information theory concepts in the analysis of financial statements. Manage. Sci. 15, 459–480 (1969)CrossRefGoogle Scholar
  43. 43.
    Morris, R.: Early Warning Indicators of Corporate Failure: A Critical Review of Previous Research and Further Empirical Evidence. Ashgate Publishing Company, Brookfield (1998)Google Scholar
  44. 44.
    Scott, J.: The probability of bankruptcy: A comparison of empirical predictions and theoretic models. J. Bank. Finance 5, 317–344 (1981)CrossRefGoogle Scholar
  45. 45.
    Aziz, A., Emanuel, D.C., Lawson, G.H.: Bankruptcy prediction—an investigation of cash flow based models’. J. Manage. Stud. 25, 419–437 (1988)CrossRefGoogle Scholar
  46. 46.
    Laitinen, E.K., Laitinen, T.: Cash management behavior and failure prediction’. J. Bus. Finance Acc. 25, 893–919 (1998)CrossRefGoogle Scholar
  47. 47.
    Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973)CrossRefGoogle Scholar
  48. 48.
    Merton, R.C.: Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4, 141–183 (1973)CrossRefGoogle Scholar
  49. 49.
    Wilson, T.: Portfolio Credit Risk. Federal reserve bank of new york economic policy review, October, pp. 71–82 (1998)Google Scholar
  50. 50.
    Edmister, R.: An empirical test to financial ratio analysis for small business failure prediction. J. Financ. Quant. Anal. 7, 1477–1493 (1972)CrossRefGoogle Scholar
  51. 51.
    Laitinen, E.K.: Financial ratios and different failure processes. J. Bus. Finance Acc. 18, 649–673 (1991)CrossRefGoogle Scholar
  52. 52.
    Altman, E.I., Sabato, G.: Modeling credit risk for SMEs: Evidence from the US market. Abacus 43, 332–357 (2007)CrossRefGoogle Scholar
  53. 53.
    Kallberg, J.G., Udell, G.F.: The value of private sector business credit information sharing: The US case. J. Bank. Finance 27, 449–469 (2003)CrossRefGoogle Scholar
  54. 54.
    Pompe, P., Bilderbeek, J.: The prediction of bankruptcy of small and medium sized industrial firms. J. Bus. Ventur. 20, 847–868 (2005)CrossRefGoogle Scholar
  55. 55.
    Ireland, C.: An examination of distress in the electric power industry. Student research reports, Glucksman fellowship program. (2005)
  56. 56.
    Altman, E.I., Hartzell, J., Peck, M.: Emerging Markets Corporate Bonds: A Scoring System. Salomon Brothers Inc., New York (1995)Google Scholar
  57. 57.
    Altman, E.I., Hotchkiss, E.: Corporate Financial Distress And Bankruptcy: Predict and Avoid Bankruptcy. Analyse and invest in distressed debt. Wiley, New Jersey (2006)Google Scholar
  58. 58.
    Altman, E.I., Kant, T., Rattanaruengyot, T.: Post-chapter 11 bankruptcy performance: Avoiding chapter 22. J. Appl. Corp. Finance 21, 53–64 (2009)CrossRefGoogle Scholar
  59. 59.
    Altman, E.I., Revisiting Credit Scoring Models in a Basel 2 Environment. Working paper, Stern School of Business New York University. (2002)
  60. 60.
    Altman, E.I., Saunders, A.: Credit risk measurement: Developments over the last 20 years. J. Bank. Finance 21, 1721–1742 (1998)CrossRefGoogle Scholar
  61. 61.
    Altman, E.I.: Predicting the Financial Distress of Companies: Revisiting the Z-Score and Zeta Models. Working paper, Stern School of Business New York University. (2000)
  62. 62.
    Sterling, R.R.: The going concern: An examination. Acc. Rev. 43, 481–502 (1968)Google Scholar
  63. 63.
    AFN Group LLC: What’s liquidation value and how it is calculated? (2010)
  64. 64.
    Watts, R.L.: Conservatism in Accounting Part I: Explanations and Implications. Working paper no. FR 03-16., Simon School of Business. (2003)
  65. 65.
    Giunta, F.: Il Capital Netto di Garanzia a Tutela dei Creditori. Amministrazione e Finanza 9, 27–32 (1997)Google Scholar
  66. 66.
    Holthausen, R.W., Watts, R.L.: The relevance of the value-relevance literature for financial accounting standard setting. J. Acc. Econ. 31, 3–75 (2001)CrossRefGoogle Scholar
  67. 67.
    Watts, R.L.: Accounting Objectives. Working paper no. 7408, University of Rochester (1974)Google Scholar
  68. 68.
    Watson, J., Everett, J.: Defining small business failure. Int. Small Bus. J. 11, 35–48 (1993)CrossRefGoogle Scholar
  69. 69.
    Kawai, M., Hashimoto, J., Izumida, S.: Japanese firms in financial distress and main banks: Analyses of interest-rate premia. Jpn World Econ 8, 175–194 (1996)CrossRefGoogle Scholar
  70. 70.
    Taffler, R.: Forecasting company failure in the UK using discriminant analysis and financial ratio data. J. R. Stat. Assoc. 145, 342–358 (1982)Google Scholar
  71. 71.
    Keasey, K., Watson, R.: The state of the art of small firm failure prediction: Achievements and prognosis. Int. Small Bus. J. 9, 11–29 (1991)CrossRefGoogle Scholar
  72. 72.
    Altman, E.I., Sabato, G., Wilson, N.: The Value of Non-Financial Information in SME Risk Management. Working paper, Credit Management Research Centre (CMRC), University of Leeds, UK (2008)Google Scholar
  73. 73.
    Keasy, K., Watson, R.: Non-financial symptoms and the prediction of small company failure: A test of Argenti’s hypotheses. J. Bus. Finance Acc. 14, 335–354 (1987)CrossRefGoogle Scholar
  74. 74.
    Lehmann, B.: Is It Worth the While? The Relevance of Qualitative Information in Credit Rating. Working paper, University of Konstanz, Germany (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bruno Maria Franceschetti
    • 1
    Email author
  • Claudia Koschtial
    • 2
  • Carsten Felden
    • 2
  1. 1.University of MacerataMacerataItaly
  2. 2.Technische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations