Advertisement

Color Invariant SURF in Discriminative Object Tracking

  • Dung Manh Chu
  • Arnold W. M. Smeulders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6554)

Abstract

Tracking can be seen as an online learning problem, where the focus is on discriminating object from background. From this point of view, features play a key role as the tracking accuracy depends on how well the feature distinguishes object and background. Current discriminative trackers use traditional features such as intensity, RGB and full body shape features. In this paper, we propose to use color invariant SURF features in the discriminative tracking. This set of invariant features has been shown to be of increased invariance and discriminative power. The resulting tracker inherits a good discrimination between object and background while keeping advantages of the discriminative tracking framework. Experiments on a dataset of 80 videos covering a wide range of tracking circumstances show that the tracker is robust to changes in object appearance, lighting conditions and able to track objects under cluttered scenes and partial occlusion.

Keywords

tracking surf color invariant 

References

  1. 1.
    Zivkovic, Z., Kröse, B.: An EM-like algorithm for color-histogram-based object tracking. In: CVPR (2004)Google Scholar
  2. 2.
    Nguyen, H., Smeulders, A.: Robust track using foreground-background texture discrimination. IJCV 68(3), 277–294 (2006)CrossRefGoogle Scholar
  3. 3.
    Ross, D., Lim, J., Lin, R.S.: Incremental learning for robust visual tracking. IJCV 77, 125–141 (2008)CrossRefGoogle Scholar
  4. 4.
    Nguyen, H., Smeulders, A.: Fast occluded object tracking by a robust appearance filter. PAMI 26, 1099–1104 (2004)CrossRefGoogle Scholar
  5. 5.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60, 91–110 (2004)CrossRefGoogle Scholar
  6. 6.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). CVIU 110, 346–359 (2008)Google Scholar
  7. 7.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. PAMI 27, 1615–1630 (2005)CrossRefGoogle Scholar
  8. 8.
    Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invariants. CVIU 113, 48–62 (2009)Google Scholar
  9. 9.
    Van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. PAMI 32, 1582–1596 (2010)CrossRefGoogle Scholar
  10. 10.
    Uijlings, J., Smeulders, A., Scha, R.: Real-time bag of words, approximately. In: CIVR (2009)Google Scholar
  11. 11.
    Alper Yimaz, O.J., Shah, M.: Object tracking: a survey. ACM Computing Surveys 38 (2006)Google Scholar
  12. 12.
    Sheikh, Y., Javed, O., Kanade, T.: Background subtraction for freely moving cameras. In: ICCV (2009)Google Scholar
  13. 13.
    Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: BMVC (2006)Google Scholar
  14. 14.
    Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR (2009)Google Scholar
  15. 15.
    Chu, D.M., Smeulders, A.W.M.: Thirteen hard cases in visual tracking. In: AVSS (2010)Google Scholar
  16. 16.
    Grabner, M., Grabner, H., Bischof, H.: Learning features for tracking. In: CVPR (2007)Google Scholar
  17. 17.
    Avidan, S.: Ensemble tracking. PAMI 29, 261–271 (2007)CrossRefGoogle Scholar
  18. 18.
    Grabner, H., Leistner, C., Bischof, H.: Semi-supervised On-Line Boosting for Robust Tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 234–247. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Mahadevan, V., Vasconcelos, N.: Saliency-based discriminant tracking. In: CVPR (2009)Google Scholar
  20. 20.
    Tremeau, A., Tominaga, S., Plataniotis, K.N.: Color in image and video processing: most recent trends and future research directions. EURASIP Journal on Image and Video Processing 2008 (2008)Google Scholar
  21. 21.
    He, W., Yamashita, T., Lu, H., Lao, S.: Surf tracking. In: ICCV (2009)Google Scholar
  22. 22.
    Zhou, H., Yuan, Y., Shi, C.: Object tracking using sift features and mean shift. CVIU 113, 345–352 (2009)Google Scholar
  23. 23.
    Tran, S., Davis, L.: Robust object tracking with regional affine invariant features. In: ICCV (2007)Google Scholar
  24. 24.
    Stern, H., Efros, B.: Adaptive color space switching for tracking under varying illumination. IVC 23, 353–364 (2005)CrossRefGoogle Scholar
  25. 25.
    Wang, J., Yagi, Y.: Integrating color and shape-texture features for adaptive real-time object tracking. TIP 17, 235–240 (2008)Google Scholar
  26. 26.
    Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. PAMI 27, 1631–1643 (2005)CrossRefGoogle Scholar
  27. 27.
    Geusebroek, J.M., van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. PAMI 23, 1338–1350 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dung Manh Chu
    • 1
  • Arnold W. M. Smeulders
    • 1
  1. 1.Intelligent Systems Lab Amsterdam (ISLA)University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations