Vanishing Point Detection by Segment Clustering on the Projective Space

  • Fernanda A. Andaló
  • Gabriel Taubin
  • Siome Goldenstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6554)


The analysis of vanishing points on digital images provides strong cues for inferring the 3D structure of the depicted scene and can be exploited in a variety of computer vision applications. In this paper, we propose a method for estimating vanishing points in images of architectural environments that can be used for camera calibration and pose estimation, important tasks in large-scale 3D reconstruction. Our method performs automatic segment clustering in projective space – a direct transformation from the image space – instead of the traditional bounded accumulator space. Since it works in projective space, it handles finite and infinite vanishing points, without any special condition or threshold tuning. Experiments on real images show the effectiveness of the proposed method. We identify three orthogonal vanishing points and compute the estimation error based on their relation with the Image of the Absolute Conic (IAC) and based on the computation of the camera focal length.


Vanishing point detection Segment clustering 3D reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zeng, X., Wang, Q., Xu, J.: MAP Model for Large-scale 3D Reconstruction and Coarse Matching for Unordered Wide-baseline Photos. In: British Machine Vision Conference (2008)Google Scholar
  2. 2.
    Jang, K.H., Jung, S.K.: Practical modeling technique for large-scale 3D building models from ground images. Pattern Recognition Letters 30(10), 861–869 (2009)CrossRefGoogle Scholar
  3. 3.
    Lee, S.C., Jung, S.K., Nevatia, R.: Automatic Integration of Facade Textures into 3D Building Models with a Projective Geometry Based Line Clustering. In: USC Computer Vision (2002)Google Scholar
  4. 4.
    Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., Master, N.: Calibrated, Registered Images of an Extended Urban Area. International Journal of Computer Vision 53(1), 93–107 (2003)CrossRefGoogle Scholar
  5. 5.
    Wilczkowiak, M., Sturm, P., Boyer, E.: Using Geometric Constraints through Parallelepipeds for Calibration and 3D Modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 194–207 (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, G., Tsui, H.-T., Hu, Z., Wu, F.: Camera calibration and 3D reconstruction from a single view based on scene constraints. Image and Vision Computing 23(3), 311–323 (2005)CrossRefGoogle Scholar
  7. 7.
    Wang, G., Tsu, H.-T., Wu, Q.M.J.: What can we learn about the scene structure from three orthogonal vanishing points in images. Pattern Recognition Letters 30(3), 192–202 (2009)CrossRefGoogle Scholar
  8. 8.
    Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  9. 9.
    Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  10. 10.
    Barnard, S.T.: Interpreting perspective images. Artificial Intelligence 21(4), 435–462 (1983)CrossRefGoogle Scholar
  11. 11.
    Tuytelaars, T., Van Gool, L.J., Proesmans, M., Moons, T.: A Cascaded Hough Transform as an Aid in Aerial Image Interpretation. In: International Conference on Computer Vision, pp. 67–72 (1998)Google Scholar
  12. 12.
    Shufelt, J.A.: Performance Evaluation and Analysis of Vanishing Point Detection Techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(3), 282–288 (1999)CrossRefGoogle Scholar
  13. 13.
    Almansa, A., Desolneux, A., Vamech, S.: Vanishing Point Detection without Any A Priori Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(4), 502–507 (2003)CrossRefGoogle Scholar
  14. 14.
    Rother, C.: A New Approach for Vanishing Point Detection in Architectural Environments. In: British Machine Vision Conference (2000)Google Scholar
  15. 15.
    McLean, G.F., Kotturi, D.: Vanishing Point Detection by Line Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(11), 1090–1095 (1995)CrossRefGoogle Scholar
  16. 16.
    Tardif, J.-P.: Non-Iterative Approach for Fast and Accurate Vanishing Point Detection. In: International Conference on Computer Vision, pp. 1250–1257 (2009)Google Scholar
  17. 17.
    Desolneux, A., Moisan, L., Morel, J.-M.: Edge Detection by Helmholtz Principle. Journal of Mathematical Imaging and Vision 14(3), 271–284 (2001)CrossRefMATHGoogle Scholar
  18. 18.
    Stolfi, J.: Oriented Projective Geometry: A Framework for Geometric Computations. Academic Press (1991)Google Scholar
  19. 19.
    Mardia, K.V., Jupp, P.E.: Directional statistics. John Wiley and Sons (1999)Google Scholar
  20. 20.
    Denis, P., Elder, J.H., Estrada, F.J.: Efficient Edge-Based Methods for Estimating Manhattan Frames in Urban Imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fernanda A. Andaló
    • 1
  • Gabriel Taubin
    • 2
  • Siome Goldenstein
    • 1
  1. 1.Institute of ComputingUniversity of Campinas (Unicamp)CampinasBrazil
  2. 2.Division of EngineeringBrown UniversityProvidenceUSA

Personalised recommendations