Multiscaled Cross-Correlation Dynamics on SenseCam Lifelogged Images

  • N. Li
  • M. Crane
  • H. J. Ruskin
  • Cathal Gurrin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7732)

Abstract

In this paper, we introduce and evaluate a novel approach, namely the use of the cross correlation matrix and Maximum Overlap Discrete Wavelet Transform (MODWT) to analyse SenseCam lifelog data streams. SenseCam is a device that can automatically record images and other data from the wearer’s whole day. It is a significant challenge to deconstruct a sizeable collection of images into meaningful events for users. The cross-correlation matrix was used, to characterise dynamical changes in non-stationary multivariate SenseCam images. MODWT was then applied to equal-time Correlation Matrices over different time scales and used to explore the granularity of the largest Eigenvalue and changes, in the ratio of the sub-dominant Eigenvalue spectrum dynamics, over sliding time windows. By examination of the eigenspectrum, we show that these approaches can identify “Distinct Significant Events” for the wearers. The dynamics of the Eigenvalue spectrum across multiple scales provide useful insight on details of major events in SenseCam logged images.

Keywords

Lifelogging SenseCam Images equal-time Correlation Matrices Maximum Overlap Discrete Wavelet Transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur, N., Wood, K.: SenseCam: A Retrospective Memory Aid. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 177–193. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Harper, R., Randall, D., Smyth, N., Evans, C., Heledd, L., Moore, R.: Thanks for the Memory. In: Proceedings of the 21st BCS HCI Group Conference, HCI 2007, Lancaster, U.K. (2007)Google Scholar
  3. 3.
    Harper, R., Randall, D., Smyth, N., Evans, C., Heledd, L., Moore, R.: The Past is a Different Place: They Do Things Differently There. In: Designing Interactive Systems, Cape Town, South Africa, pp. 271–280 (2008)Google Scholar
  4. 4.
    Ashbrook, D., Lyons, K., Clawson, J.: Capturing Experiences Anytime, Anywhere. IEEE Pervasive Computing (2006)Google Scholar
  5. 5.
    Bell, G., Gemmell, J.: A Digital Life. Scientific American (2007)Google Scholar
  6. 6.
    Lee, M.L., Dey, A.K.: Providing good memory cues for people with episodic memory impairment. In: Assets 2007: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility, Tempe, Arizona, USA, pp. 131–138 (2007)Google Scholar
  7. 7.
    Lin, W.H., Hauptmann, A.: Structuring Continuous Video Recordings of Everyday Life Using Time-Constrained Clustering. In: Multimedia Content Analysis, Management and Retieval SPIE-IST Electronic Imaging, vol. 6073, San Jose, California, USA, pp. 111–119 (2006)Google Scholar
  8. 8.
    Doherty, A.R., Smeaton, A.F.: Automatically Segmenting Lifelog Data into Events. In: Proc. WIAMIS 2008, pp. 20–23 (2008)Google Scholar
  9. 9.
    Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M.: Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83(7), 1467–1470 (1999)CrossRefGoogle Scholar
  10. 10.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Nunes Amaral, L.A., Stanley, H.E.: Universal and non-uiversal properties of cross-correlations in financial time series. Phys. Rev. Lett. 83(7), 1471–1474 (1999)CrossRefGoogle Scholar
  11. 11.
    Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M.: Random matrix theory and financial correlations. Int. J. Theoret. Appl. Finance 3(3), 391–397 (2000)MATHCrossRefGoogle Scholar
  12. 12.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Nunes Amaral, L.A., Guhr, T., Stanley, H.E.: A random matrix approach to cross-correlations in financial data. Phys. Rev. E 65, 066126/1–066126/18 (2000)Google Scholar
  13. 13.
    Gopikrishnan, P., Rosenow, B., Plerou, V., Eugene Stanley, H.: Indentifying business sectors from stock price fluctuations. Phys. Rev. E 64, 035106R/1–035106R/4 (2001)Google Scholar
  14. 14.
    Utsugi, A., Ino, K., Oshikawa, M.: Random matrix theory analysis of cross-correlations in financial markets. Phys. Rev. E 70, 026110/1–026110/17 (2004)Google Scholar
  15. 15.
    Bouchaud, J.P., Oshikawa, M.: Theory of Financial Risk and Derivative Pricing. Cambridge University Press (2003)Google Scholar
  16. 16.
    Wilcox, D., Gebbie, T.: On the analysis of cross-correlations in South African market data. Physica A 344(1-2), 294–298 (2004)CrossRefGoogle Scholar
  17. 17.
    Sharifi, S., Crane, M., Shamie, A., Ruskin, H.J.: Random matrix theory for portfolio optimization: A stability approach. Physica A 335(3-4), 629–643 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Conlon, T., Ruskin, H.J., Crane, M.: Random matrix theory and fund of funds portfolio optimisation. Physica A 382(2), 565–576 (2007)CrossRefGoogle Scholar
  19. 19.
    Conlon, T., Ruskin, H.J., Crane, M.: Wavelet multiscale analysis for Hedge Funds: Scaling and Strategies. Physica A, 5197–5204 (2008)Google Scholar
  20. 20.
    Podobnik, B., Stanley, H.E.: Detrended cross-correlation analysis: A new method for analysing two non-stationary time series. Phys. Rev. Lett. 100(8), 084102/1–084102/11 (2008)Google Scholar
  21. 21.
    Schindler, K., Leung, H., Elger, C.E., Lehnertz, K.: Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130, 65–77 (2007)CrossRefGoogle Scholar
  22. 22.
    Schindler, K., Elger, C.E., Lehnertz, K.: Increasing synchronization promote seizure termination: Evidence from status epilepticus. Clin. Neurophysiol. 118(9), 1955–1968 (2007)CrossRefGoogle Scholar
  23. 23.
    Kwapien, J., Drozda, S., Ionannides, A.A.: Temporal correlations versus noise in the correlation matrix formalism: An example of the brain auditory response. Phys. Rev. E 62, 5557–5564 (2000)CrossRefGoogle Scholar
  24. 24.
    Li, N., Crane, M., Ruskin, H.J.: Automatically detecting significant events on sensecam. ERCIM News (87) (2011)Google Scholar
  25. 25.
    Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Golderberger, A.L.: On the mosaic organization of DNA sequences. Phys. Rev. E 49, 1685–1689 (1994)CrossRefGoogle Scholar
  26. 26.
    Matos, J.A.O., Gama, S.M.A., Ruskin, H.J., Sharkasi, A.A., Crane, M.: An econophysics approach to the Portuguese Stock Index-PSI-20. Physica A 342, 665–676 (2004)CrossRefGoogle Scholar
  27. 27.
    Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Matsa, M.E., Peng, C.-K., Simons, M., Stanley, H.E.: Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E 51, 5084–5091 (1995)CrossRefGoogle Scholar
  28. 28.
    Heneghan, C., McDarby, G.: Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E 62, 6103–6110 (2000)CrossRefGoogle Scholar
  29. 29.
    Percival, D.B., Walden, A.T.: Wavelet methods for time series analysis. Cambridge University Press (2000)Google Scholar
  30. 30.
    Sharkasi, A., Crane, M., Ruskin, H.J., Matos, J.A.: The reaction of stock markets to crashes and events: A comparison study between emerging and mature markets using wavelet transforms. Physica A 368, 511–521 (2006)CrossRefGoogle Scholar
  31. 31.
    Burrus, C.S., Gopinath, R.A., Gao, H.: Introduction to wavelets and wavelets transforms. Prentice Hall (1997)Google Scholar
  32. 32.
    Misra, H., Hopfgartner, F., Goyal, A., Punitha, P., Jose, J.M.: TV News Story Segmentation Based on Semantic Coherence and Content Similarity. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 347–357. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • N. Li
    • 1
    • 2
  • M. Crane
    • 1
  • H. J. Ruskin
    • 1
  • Cathal Gurrin
    • 2
  1. 1.Centre for Scientific Computing & Complex Systems ModellingDublin City UniversityIreland
  2. 2.CLARITY: Centre for Sensor Web Technologies, School of ComputingDublin City UniversityIreland

Personalised recommendations