On Modeling 3-D Video Traffic

  • M. E. Sousa-Vieira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7732)


Today’s 3-D video has become feasible on consumer electronics platforms through advances in display technology, signal processing, transmission technology, circuit design and computer power. In order to develop research studies on network transport of 3-D video, adequate traffic models are necessary. Particularly, the efficient and on-line generation of synthetic paths is fundamental for simulation studies. In this work we check the suitability of the M/G/∞ process for modeling the correlation structure of 3-D video.


3-D video traffic modeling M/G/∞ process Whittle estimator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  2. 2.
    Vetro, A., Wiegand, T., Sullivan, G.J.: Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proceedings of the IEEE 4(99), 626–642 (2011)CrossRefGoogle Scholar
  3. 3.
    Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1–15 (1994)CrossRefGoogle Scholar
  4. 4.
    Beran, J., Sherman, R., Taqqu, M.S., Willinger, W.: Long-range dependence in variable bit rate video traffic. IEEE Transactions on Communications 43(2-4), 1566–1579 (1995)CrossRefGoogle Scholar
  5. 5.
    Paxson, V., Floyd, S.: Wide-area traffic: The failure of Poisson modeling. IEEE/ACM Transactions on Networking 3(3), 226–244 (1995)CrossRefGoogle Scholar
  6. 6.
    Crovella, M.E., Bestavros, A.: Self-similarity in world wide web traffic: Evidence and possible causes. IEEE/ACM Transactions on Networking 5(6), 835–846 (1997)CrossRefGoogle Scholar
  7. 7.
    Garrett, M.W., Willinger, W.: Analysis, modeling and generation of self-similar VBR video traffic. In: Proc. ACM SIGCOMM 1994, London, UK, pp. 269–280 (1994)Google Scholar
  8. 8.
    Krunz, M., Makowski, A.: Modeling video traffic using M/G/∞ input processes: A compromise between markovian and LRD models. IEEE Journal on Selected Areas in Communications 16(5), 733–748 (1998)CrossRefGoogle Scholar
  9. 9.
    Lombardo, A., Morabito, G., Schembra, G.: An accurate and treatable Markov model of MPEG video traffic. In: Proc. IEEE INFOCOM 1998, San Francisco, CA, USA, pp. 217–224 (1998)Google Scholar
  10. 10.
    Ma, S., Ji, C.: Modeling video traffic using wavelets. IEEE Communications Letters 2(4), 100–103 (1998)CrossRefGoogle Scholar
  11. 11.
    Melamed, B., Pendarakis, D.E.: Modeling full-length VBR video using Markov-renewal-modulated TES models. IEEE Journal on Selected Areas in Communications 16(5), 600–611 (1998)CrossRefGoogle Scholar
  12. 12.
    Frey, M., Nguyen-Quang, S.: A Gamma-based framework for modeling variable bit rate MPEG video sources: The GoP GBAR model. IEEE/ACM Transactions on Networking 8(6), 710–719 (2000)CrossRefGoogle Scholar
  13. 13.
    Sarkar, U.K., Ramakrishnan, S., Sarkar, D.: Modeling full-length video using Markov-modulated Gamma-based framework. IEEE/ACM Transactions on Networking 11(4), 638–649 (2003)CrossRefGoogle Scholar
  14. 14.
    Cox, D.R.: Long-range dependence: A review. In: David, H.A., David, H.T. (eds.) Statistics: An Appraisal, pp. 55–74. Iowa State University Press (1984)Google Scholar
  15. 15.
    Suárez, A., López, J.C., López, C., Fernández, M., Rodríguez, R., Sousa, M.E.: A new heavy-tailed discrete distribution for LRD M/G/∞ sample generation. Performance Evaluation 47(2/3), 197–219 (2002)MATHCrossRefGoogle Scholar
  16. 16.
    Sousa, M.E., Suárez, A., Fernández, M., López, C., Rodríguez, R.F.: A highly efficient M/G/∞ generator of self-similar traces. In: 2006 Winter Simulation Conference, Monterey, CA, USA, pp. 2146–2153 (2006)Google Scholar
  17. 17.
    Whittle, P.: Estimation and information in stationary time series. Arkiv Matematick 2(23), 423–434 (1953)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Abry, P., Veitch, D.: Wavelet analysis of long-range dependent traffic. IEEE Transactions on Information Theory 44(1), 2–15 (1998)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Taqqu, M.S., Teverovsky, V.: On estimating the intensity of long-range dependence in finite and infinite variance time series. In: Adler, R., Feldman, R., Taqqu, M.S. (eds.) A Practical Guide to Heavy Tails, pp. 177–217. Birkhauser (1998)Google Scholar
  20. 20.
    Sousa, M.E., Suárez, A., López, J.C., López, C., Fernández, M., Rodríguez, R.F.: Application of the Whittle estimator to the modeling of traffic based on the M/G/∞ process. IEEE Communications Letters 11(10), 817–819 (2007)CrossRefGoogle Scholar
  21. 21.
    Cox, D.R., Isham, V.: Point Processes. Chapman and Hall (1980)Google Scholar
  22. 22.
    Hurst, H.E.: Long-term storage capacity of reservoirs. Transactions of the American Society of Civil Engineers 116, 770–799 (1951)Google Scholar
  23. 23.
    Beran, J.: Statistics for Long-Memory Processes. Chapman and Hall (1994)Google Scholar
  24. 24.
    Sousa, M.E., Suárez, A., Rodríguez, R.F., López, C.: Flexible adjustment of the short-term correlation of LRD M/G/∞-based processes. Electronic Notes in Theoretical Computer Science (2010)Google Scholar
  25. 25.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. E. Sousa-Vieira
    • 1
  1. 1.Department of Telematics EngineeringUniversity of VigoSpain

Personalised recommendations