GPS Estimation from Users’ Photos

  • Jing Li
  • Xueming Qian
  • Yuan Yan Tang
  • Linjun Yang
  • Chaoteng Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7732)


Nowadays social media are very popular for people to share their photos with their friends. Many of the photos are geo-tagged (with GPS information) whether automatically or manually. Social media management websites such as Flickr allow users manually labeling their uploaded photos with GPS with the interface of dragging them into the map. However, manually dragging the photos to the map will bring more error and very boring for users to labeling their photos. Thus in this paper, a GPS location estimation approach is proposed. For an uploaded image, its GPS information is estimated by both hierarchical global feature classification and local feature refinement to guarantee the accuracy and computational cost. To guarantee the estimation performances, k-nearest neighbors are selected in global feature classification stage. Experiments show the effectiveness of our proposed approach.


GPS Estimation K-NN Hierarchical Structure BoW Geo-tag 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hays, J., Efros, A.A.: IM2GPS: estimating geographic information from a single image. In: CVPR (2008)Google Scholar
  2. 2.
    Qian, X., Liu, G., Guo, D., Li, Z., Wang, Z., Wang, H.: Object Categorization using Hierarchical Wavelet Packet Texture Descriptors. In: Proc. ISM, pp. 44–51 (2009)Google Scholar
  3. 3.
    Lowe, D.: Distinctive image features from scale-invariant key points. Int’l J. Computer Vision 2(60), 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  5. 5.
    Kennedy, L., Naaman, M.: Generating diverse and representative image search results for landmarks. In: WWW 2008 (2008)Google Scholar
  6. 6.
    Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic query expansion with a generative feature model for object retrieval. In: Proc. ICCV (2007)Google Scholar
  7. 7.
    Zhou, W., Lu, Y., Li, H., Song, Y., Tian, Q.: Spatial Coding for Large Scale Partial-Duplicate Web Image Search. In: MM 2010, Firenze, Italy, October 25-29 (2010)Google Scholar
  8. 8.
    Wang, M., Ni, B., Hua, X.-S., Chua, T.: Assistive Tagging: A Survey of Multimedia Tagging with Human-Computer Joint Exploration. ACM Computing Surveys 44(4) (2012)Google Scholar
  9. 9.
    Wang, M., Yang, K., Hua, X.-S., Zhang, H.: Towards a Relevant and Diverse Search of Social Images. IEEE Transactions on Multimedia 12(8), 829–842 (2010)CrossRefGoogle Scholar
  10. 10.
    Xue, Y., Qian, X.: Visual Summarization of Landmarks via Viewpoint Modeling. In: Proc. ICIP 2012, pp. 2873–2876 (2012)Google Scholar
  11. 11.
    Qian, X., Liu, X., Zheng, C., Du, Y.: Tagging Photos Using Users’ Vocabularies. NeurocomputingGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jing Li
    • 1
  • Xueming Qian
    • 1
  • Yuan Yan Tang
    • 2
  • Linjun Yang
    • 3
  • Chaoteng Liu
    • 1
  1. 1.Depart. Information and Communication EngineeringXi’an Jiaotong UniversityChina
  2. 2.FST of Macau UniversityMacauChina
  3. 3.Microsoft Research AsiaChina

Personalised recommendations