Advertisement

Beyond 2-Safety: Asymmetric Product Programs for Relational Program Verification

  • Gilles Barthe
  • Juan Manuel Crespo
  • César Kunz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7734)

Abstract

Relational Hoare Logic is a generalization of Hoare logic that allows reasoning about executions of two programs, or two executions of the same program. It can be used to verify that a program is robust or (information flow) secure, and that two programs are observationally equivalent. Product programs provide a means to reduce verification of relational judgments to the verification of a (standard) Hoare judgment, and open the possibility of applying standard verification tools to relational properties. However, previous notions of product programs are defined for deterministic and structured programs. Moreover, these notions are symmetric, and cannot be applied to properties such as refinement, which are asymmetric and involve universal quantification on the traces of the first program and existential quantification on the traces of the second program.

Asymmetric products generalize previous notions of products in three directions: they are based on a control-flow graph representation of programs, they are applicable to non-deterministic languages, and they are by construction asymmetric. Thanks to these characteristics, asymmetric products allow to validate abstraction/refinement relations between two programs, and to prove the correctness of advanced loop optimizations that could not be handled by our previous work. We validate their effectiveness by applying a prototype implementation to verify representative examples from translation validation and predicate abstraction.

Keywords

Product Program Full Product Relational Program Predicate Abstraction Abstract Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: Programming Languages Design and Implementation, pp. 203–213 (2001)Google Scholar
  2. 2.
    Bannwart, F.Y., Müller, P.: A program logic for bytecode. Electronic Notes in Theoretical Computer Science 141, 255–273 (2005)CrossRefGoogle Scholar
  3. 3.
    Barrett, C.W., Fang, Y., Goldberg, B., Hu, Y., Pnueli, A., Zuck, L.D.: TVOC: A Translation Validator for Optimizing Compilers. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 291–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Barthe, G., Crespo, J.M., Kunz, C.: Relational Verification Using Product Programs. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Barthe, G., D’Argenio, P., Rezk, T.: Secure Information Flow by Self-Composition. In: Foccardi, R. (ed.) Computer Security Foundations Workshop, pp. 100–114. IEEE Press (2004)Google Scholar
  6. 6.
    Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)Google Scholar
  7. 7.
    Barthe, G., Kunz, C.: Certificate Translation in Abstract Interpretation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 368–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Benton, N.: Simple relational correctness proofs for static analyses and program transformations. In: Jones, N.D., Leroy, X. (eds.) Principles of Programming Languages, pp. 14–25. ACM Press (2004)Google Scholar
  9. 9.
    Blech, J.O., Schaefer, I., Poetzsch-Heffter, A.: Translation Validation of System Abstractions. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 139–150. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Bodík, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S., Rodarmor, C.: Programming with angelic nondeterminism. In: Principles of Programming Languages, pp. 339–352 (2010)Google Scholar
  11. 11.
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Principles of Programming Languages, pp. 238–252 (1977)Google Scholar
  12. 12.
    Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses for verifying program transformations. J. Autom. Reasoning 41(1), 1–31 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Magill, S., Tsai, M.-H., Lee, P., Tsay, Y.-K.: Automatic numeric abstractions for heap-manipulating programs. In: Hermenegildo, M., Palsberg, J. (eds.) Principles of Programming Languages, pp. 211–222. ACM (2010)Google Scholar
  15. 15.
    Morgan, C.: Programming from specifications. Prentice-Hall International Series in Computer Science. Prentice-Hall, Inc. (June 1990)Google Scholar
  16. 16.
    Pnueli, A., Siegel, M.D., Singerman, E.: Translation Validation. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Tan, G., Appel, A.W.: A Compositional Logic for Control Flow. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 80–94. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Yang, H.: Relational separation logic. Theoretical Computer Science 375(1-3), 308–334 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Yang, H., O’Hearn, P.W.: A Semantic Basis for Local Reasoning. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Zaks, A., Pnueli, A.: CoVaC: Compiler Validation by Program Analysis of the Cross-Product. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 35–51. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Zuck, L.D., Pnueli, A., Goldberg, B.: Voc: A methodology for the translation validation of optimizing compilers. J. UCS 9(3), 223–247 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Juan Manuel Crespo
    • 1
  • César Kunz
    • 1
    • 2
  1. 1.IMDEA Software InstituteSpain
  2. 2.Universidad Politécnica de MadridSpain

Personalised recommendations