Advertisement

A Note on Extensions: Admissible Rules via Semantics

  • Jeroen Goudsmit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7734)

Abstract

Any intermediate logic with the disjunction property admits the Visser rules if and only if it has the extension property. This equivalence restricts nicely to the extension property up to n. In this paper we demonstrate that the same goes even when omitting the rule ex falso quod libet, that is, working over minimal rather than intuitionistic logic. We lay the groundwork for providing a basis of admissibility for minimal logic, and tie the admissibility of the Mints–Skura rule to the extension property in a stratified manner.

Keywords

admissible rules minimal logic disjunction property extensions of Kripke models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aczel, P.H.: Saturated Intuitionistic Theories. In: Arnold Schmidt, H., Schutte, K., Thiele, H.J. (eds.) Contributions to Mathematical Logic Proceedings of the Logic Colloquium, Hannover 1966. Studies in Logic and the Foundations of Mathematics, vol. 50, pp. 1–11. Elsevier (1968)Google Scholar
  2. 2.
    Chagrov, A., Zakharyashchev, M.: The Disjunction Property of Intermediate Propositional Logics. Studia Logica 50(2), 189–216 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cintula, P., Metcalfe, G.: Admissible rules in the implication-negation fragment of intuitionistic logic. Annals of Pure and Applied Logic 162(2), 162–171 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Citkin, A.: A note on admissible rules and the disjunction property in intermediate logics. Archive for Mathematical Logic 51, 1–14 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Došen, K.: Sequent-systems and groupoid models. II. Studia Logica 48(1), 41–65 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dzik, W.: Remarks on projective unifiers. Bulletin of the Section of Logic 40(1), 37–45 (2011)MathSciNetGoogle Scholar
  7. 7.
    Friedman, H.: One Hundred and Two Problems in Mathematical Logic. The Journal of Symbolic Logic 40(2), 113–129 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gabbay, D.M., de Jongh, D.H.: A Sequence of Decidable Finitely Axiomatizable Intermediate Logics with the Disjunction Property. The Journal of Symbolic Logic 39(1), 67–78 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ghilardi, S.: Unification through Projectivity. Journal of Logic and Computation 7(6), 733–752 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Ghilardi, S.: Unification in Intuitionistic Logic. The Journal of Symbolic Logic 64(2), 859–880 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Goudsmit, J.P., Iemhoff, R.: On unification and admissible rules in Gabbay-de Jongh logics. Logic Group Preprint Series 297, 1–18 (2012)Google Scholar
  12. 12.
    Iemhoff, R.: A(nother) characterization of intuitionistic propositional logic. Annals of Pure and Applied Logic 113(1-3), 161–173 (2001); First St. Petersburg Conference on Days of Logic and ComputabilityMathSciNetCrossRefGoogle Scholar
  13. 13.
    Iemhoff, R.: On the Admissible Rules of Intuitionistic Propositional Logic. The Journal of Symbolic Logic 66(1), 281–294 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Iemhoff, R.: Intermediate Logics and Visser’s Rules. Notre Dame Journal of Formal Logic 46(1), 65–81 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Iemhoff, R., Metcalfe, G.: Hypersequent Systems for the Admissible Rules of Modal and Intermediate Logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2009. LNCS, vol. 5407, pp. 230–245. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Iemhoff, R., Metcalfe, G.: Proof theory for admissible rules. Annals of Pure and Applied Logic 159(1-2), 171–186 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jeřábek, E.: Admissible Rules of Modal Logics. Journal of Logic and Computation 15(4), 411–431 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Mathematica 4, 119–136 (1937)MathSciNetGoogle Scholar
  19. 19.
    Johnstone, P.T.: Stone Spaces. Cambridge studies in advanced mathematics, vol. 3. Cambridge University Press (1982)Google Scholar
  20. 20.
    Lorenzen, P.: Einführung in die operative Logik und Mathematik. In: Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, vol. 78. Springer (1955)Google Scholar
  21. 21.
    Maksimova, L.L.: On Maximal Intermediate Logics with the Disjunction Property. Studia Logica: An International Journal for Symbolic Logic 45(1), 69–75 (1986)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Mints, G.E.: Derivability of admissible rules. Journal of Mathematical Sciences 6, 417–421 (1976)zbMATHCrossRefGoogle Scholar
  23. 23.
    Odintsov, S., Rybakov, V.V.: Unification and Admissible rules for paraconsistent minimal Johanssons’ logic J and positive intuitionistic logic IPC+. Submitted to Annals of Pure and Applied Logic (February 2012)Google Scholar
  24. 24.
    Rozière, P.: Règles admissibles en calcul propositionnel intuitionniste. Ph.D. thesis, Université de Paris VII (1992)Google Scholar
  25. 25.
    Rybakov, V.V.: A criterion for admissibility of rules in the model system S4 and the intuitionistic logic. Algebra and Logic 23, 369–384 (1984)zbMATHCrossRefGoogle Scholar
  26. 26.
    Rybakov, V.V.: Admissibility of Logical Inference Rules. Studies in Logic and the Foundations of Mathematics, vol. 136. Elsevier (1997)Google Scholar
  27. 27.
    Skura, T.: A complete syntactical characterization of the intuitionistic logic. Reports on Mathematical Logic 23, 75–80 (1989)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Smoryński, C.: Applications of Kripke models. In: Troelstra, A.S. (ed.) Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Lecture Notes in Mathematics, vol. 344, pp. 324–391. Springer, Heidelberg (1973)CrossRefGoogle Scholar
  29. 29.
    Troelstra, A.S., van Dalen, D.: Logic. In: Constructivism in Mathematics - An Introduction. Studies in Logic and the Foundations of Mathematics, vol. 121, pp. 35–111. Elsevier (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jeroen Goudsmit
    • 1
  1. 1.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations