Compositional Reasoning for Multi-modal Logics

  • Luca Aceto
  • Anna Ingólfsdóttir
  • Cristian Prisacariu
  • Joshua Sack
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7734)

Abstract

We provide decomposition and quotienting results for multi-modal logic with respect to a composition operator, traditionally used for epistemic models, due to van Eijck et al. (Journal of Applied Non-Classical Logics 21(3–4):397–425, 2011), that involves sets of atomic propositions and valuation functions from Kripke models. While the composition operator was originally defined only for epistemic S5n models, our results apply to the composition of any pair of Kripke models. In particular, our quotienting result extends a specific result in the above mentioned paper by van Eijck et al. for the composition of epistemic models with disjoint sets of atomic propositions to compositions of any two Kripke models regardless of their sets of atomic propositions. We also explore the complexity of the formulas we construct in our decomposition result.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Ingolfsdottir, A., Prisacariu, C., Sack, J.: Compositional reasoning for multi-modal logics. Technical Report 419, Department of Informatics, University of Oslo, Oslo, Norway (September 2012)Google Scholar
  2. 2.
    Andersen, H.R.: Partial model checking (extended abstract). In: 10th IEEE Symposium on Logic in Computer Science (LICS 1995), pp. 398–407. IEEE Computer Society (1995)Google Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)Google Scholar
  4. 4.
    Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes. Cambridge Tracts in Theoretical Computer Science 50. Cambridge University Press (2009)Google Scholar
  5. 5.
    Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bloom, B., Fokkink, W., van Glabbeek, R.J.: Precongruence formats for decorated trace semantics. ACM Transactions on Computational Logic 5(1), 26–78 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)MATHCrossRefGoogle Scholar
  8. 8.
    Castellani, I., Mukund, M., Thiagarajan, P.S.: Synthesizing Distributed Transition Systems from Global Specifications. In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 219–231. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Fokkink, W., van Glabbeek, R.J., de Wind, P.: Compositionality of Hennessy-Milner logic by structural operational semantics. Theoretical Computer Science 354(3), 421–440 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of ACM 32(1), 137–161 (1985)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)Google Scholar
  12. 12.
    Kozen, D.: Complexity of finitely presented algebras. In: Proceedings of the Ninth Annual ACM Symposium on Theory of Computing, pp. 164–177. ACM (1977)Google Scholar
  13. 13.
    Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science 27, 333–354 (1983)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Laroussinie, F., Larsen, K.G.: Compositional Model Checking of Real Time Systems. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 27–41. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  15. 15.
    Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. Journal of Logic and Computation 1(6), 761–795 (1991)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Lomuscio, A., Raimondi, F.: The complexity of model checking concurrent programs against CTLK specifications. In: Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) 5th International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 548–550. ACM (2006)Google Scholar
  17. 17.
    McNulty, G.F.: Fragments of first order logic, I: Universal Horn logic. The Journal of Symbolic Logic 42(2), 221–237 (1977)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Milner, R.: Calculi for synchrony and asynchrony. Theorethical Computer Science 25, 267–310 (1983)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Milner, R.: Communication and Concurrency. Prentice Hall (1989)Google Scholar
  20. 20.
    Mohalik, S., Ramanujam, R.: A presentation of regular languages in the assumption - commitment framework. In: Proceedings of the 1998 International Conference on Application of Concurrency to System Design, ACSD 1998, pp. 250–260. IEEE Computer Society, Washington, DC (1998)CrossRefGoogle Scholar
  21. 21.
    van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Springer (2007)Google Scholar
  22. 22.
    van Eijck, J., Sietsma, F., Wang, Y.: Composing models. Journal of Applied Non-Classical Logics 21(3-4), 397–425 (2011)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Winskel, G.: A Complete System for SCCS with Modal Assertions. In: Maheshwari, S.N. (ed.) FSTTCS 1985. LNCS, vol. 206, pp. 392–410. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luca Aceto
    • 1
  • Anna Ingólfsdóttir
    • 1
  • Cristian Prisacariu
    • 2
  • Joshua Sack
    • 3
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland
  2. 2.Dept. of InformaticsUniv. of OsloBlindernNorway
  3. 3.Institute of Logic, Language, and ComputationUniversity of AmsterdamThe Netherlands

Personalised recommendations