Unifying Theories of Programming with Monads

  • Jeremy Gibbons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7681)

Abstract

The combination of probabilistic and nondeterministic choice in program calculi is a notoriously tricky problem, and one with a long history. We present a simple functional programming approach to this challenge, based on algebraic theories of computational effects. We make use of the powerful abstraction facilities of modern functional languages, to introduce the choice operations as a little embedded domain-specific language rather than having to define a language extension; we rely on referential transparency, to justify straightforward equational reasoning about program behaviour.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer (1998), graduate Texts in Computer ScienceGoogle Scholar
  2. 2.
    Beck, J.: Distributive laws. In: Seminar on Triples and Categorical Homology Theory. Lecture Notes in Mathematics, vol. 80, pp. 119–140. Springer (1969)Google Scholar
  3. 3.
    Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall (1997)Google Scholar
  4. 4.
    Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: Operating Systems Design & Implementation, pp. 137–150. USENIX Association (2004)Google Scholar
  5. 5.
    Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C., Zhang, C.: Remarks on testing probabilistic processes. Electronic Notes in Theoretical Computer Science 172, 359–397 (2007)CrossRefGoogle Scholar
  6. 6.
    Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall Series in Automatic Computation. Prentice-Hall (1976)Google Scholar
  7. 7.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification. Springer (1985)Google Scholar
  8. 8.
    Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois Journal of Mathematics, 381–398 (1965)Google Scholar
  9. 9.
    Erwig, M., Kollmansberger, S.: Probabilistic functional programming in Haskell. Journal of Functional Programming 16(1), 21–34 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Gibbons, J., Hinze, R.: Just do it: Simple monadic equational reasoning. In: Danvy, O. (ed.) International Conference on Functional Programming, pp. 2–14. ACM, New York (2011)Google Scholar
  11. 11.
    Giry, M.: A categorical approach to probability theory. In: Categorical Aspects of Topology and Analysis. Lecture Notes in Mathematics, vol. 915, pp. 68–85. Springer (1981)Google Scholar
  12. 12.
    He, J., Seidel, K., McIver, A.: Probabilistic models for the Guarded Command Language. Science of Computer Programming 28, 171–192 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Hehner, E.C.R.: Predicative programming, parts I and II. Communications of the ACM 27(2), 134–151 (1984)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hinze, R.: Deriving backtracking monad transformers. In: International Conference on Functional Programming, pp. 186–197 (2000)Google Scholar
  15. 15.
    Hoare, C.A.R.: A couple of novelties in the propositional calculus. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 31(2), 173–178 (1985)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hoare, C.A.R., Hanna, F.K.: Programs are predicates. Philosophical Transactions of the Royal Society, Part A 312(1522), 475–489 (1984)MATHCrossRefGoogle Scholar
  17. 17.
    Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall (1998)Google Scholar
  18. 18.
    Hutton, G., Fulger, D.: Reasoning about effects: Seeing the wood through the trees. In: Preproceedings of Trends in Functional Programming (May 2008)Google Scholar
  19. 19.
    Hyland, M., Power, J.: The category theoretic understanding of universal algebra: Lawvere theories and monads. Electronic Notes in Theoretical Computer Science 172, 437–458 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Logic in Computer Science, pp. 186–195 (1989)Google Scholar
  21. 21.
    Kiselyov, O., Shan, C.-c.: Embedded Probabilistic Programming. In: Taha, W.M. (ed.) DSL 2009. LNCS, vol. 5658, pp. 360–384. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Kleisli, H.: Every standard construction is induced by a pair of adjoint functors. Proceedings of the American Mathematical Society 16, 544–546 (1965)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Knuth, D.E., Yao, A.C.C.: The complexity of nonuniform random number generation. In: Traub, J.F. (ed.) Algorithms and Complexity: New Directions and Recent Results, pp. 357–428. Academic Press (1976); reprinted in Selected Papers on Analysis of Algorithms (CSLI 2000)Google Scholar
  24. 24.
    Kozen, D.: Semantics of probabilistic programs. J. Comput. Syst. Sci. 22, 328–350 (1981)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Launchbury, J.: Lazy imperative programming. In: ACM SIGPLAN Workshop on State in Programming Languages (June 1993)Google Scholar
  26. 26.
    Lawvere, F.W.: Functorial Semantics of Algebraic Theories. Ph.D. thesis, Columbia University, also available with commentary as Theory and Applications of Categories Reprint 5 (1963), http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
  27. 27.
    Lawvere, F.W.: The category of probabilistic mappings (1962) (preprint)Google Scholar
  28. 28.
    Linton, F.E.J.: Some aspects of equational theories. In: Categorical Algebra, pp. 84–95. Springer, La Jolla (1966)CrossRefGoogle Scholar
  29. 29.
    Lowe, G.: Representing nondeterministic and probabilistic behaviour in reactive processes (1993) (manuscript) Oxford University Computing LaboratoryGoogle Scholar
  30. 30.
    Mac Lane, S.: Categories for the Working Mathematician. Springer (1971)Google Scholar
  31. 31.
    McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer (2005)Google Scholar
  32. 32.
    McIver, A.K., Weber, T.: Towards Automated Proof Support for Probabilistic Distributed Systems. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 534–548. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    McKinna, J.: Why dependent types matter. In: Principles of Programming Languages, p. 1. ACM (2006), full paper available at, http://www.cs.nott.ac.uk/~txa/publ/ydtm.pdf
  34. 34.
    Meinicke, L., Solin, K.: Refinement algebra for probabilistic programs. Formal Aspects of Computing 22, 3–31 (2010)MATHCrossRefGoogle Scholar
  35. 35.
    Mislove, M.W.: Nondeterminism and Probabilistic Choice: Obeying the Laws. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–364. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  36. 36.
    Moggi, E.: Notions of computation and monads. Information and Computation 93(1) (1991)Google Scholar
  37. 37.
    Morgan, C.: Programming from Specifications, 2nd edn. Prentice-Hall (1994)Google Scholar
  38. 38.
    Morgan, C.: Elementary Probability Theory in the Eindhoven Style. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342, pp. 48–73. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  39. 39.
    Morgan, C., McIver, A., Seidel, K., Sanders, J.W.: Refinement-oriented probability for CSP. Formal Aspects of Computing 8(6), 617–647 (1996)MATHCrossRefGoogle Scholar
  40. 40.
    Peyton Jones, S.: Tackling the awkward squad: Monadic input/output, concurrency, exceptions, and foreign-language calls in Haskell. In: Hoare, T., Broy, M., Steinbruggen, R. (eds.) Engineering Theories of Software Construction, pp. 47–96. IOS Press (2001)Google Scholar
  41. 41.
    Piróg, M., Gibbons, J.: Tracing monadic computations and representing effects. In: Mathematically Structured Functional Programming (March 2012)Google Scholar
  42. 42.
    Plotkin, G., Power, J.: Notions of Computation Determine Monads. In: Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 342–356. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  43. 43.
    Plotkin, G., Pretnar, M.: Handlers of Algebraic Effects. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 80–94. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  44. 44.
    Ramsey, N., Pfeffer, A.: Stochastic lambda calculus and monads of probability distributions. In: Principles of Programming Languages, pp. 154–165 (2002)Google Scholar
  45. 45.
    Rosenhouse, J.: The Monty Hall Problem: The Remarkable Story of Math’s Most Contentious Brain Teaser. Oxford University Press (2009)Google Scholar
  46. 46.
    Spivey, M.: A functional theory of exceptions. Science of Computer Programming 14, 25–42 (1990)MATHCrossRefGoogle Scholar
  47. 47.
    Spivey, M., Seres, S.: Combinators for logic programming. In: Gibbons, J., de Moor, O. (eds.) The Fun of Programming, pp. 177–200. Cornerstones in Computing, Palgrave (2003)Google Scholar
  48. 48.
    Turner, D.A.: Total functional programming. Journal of Universal Computer Science 10(7), 751–768 (2004)MathSciNetGoogle Scholar
  49. 49.
    Varacca, D., Winskel, G.: Distributing probability over nondeterminism. Mathematical Structures in Computer Science 16, 87–113 (2006)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Vos Savant, M.: Ask Marilyn. Parade Magazine (September 9th, 1990), http://www.marilynvossavant.com/articles/gameshow.html
  51. 51.
    Wadler, P.: How to Replace Failure by a List of Successes: A Method for Exception Handling, Backtracking, and Pattern Matching in Lazy Functional Languages. In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 113–128. Springer, Heidelberg (1985), http://dx.doi.org/10.1007/3-540-15975-4_33 CrossRefGoogle Scholar
  52. 52.
    Wadler, P.: Theorems for free? In: Functional Programming Languages and Computer Architecture, pp. 347–359. ACM (1989), http://doi.acm.org/10.1145/99370.99404
  53. 53.
    Wadler, P.: Comprehending monads. Mathematical Structures in Computer Science 2(4), 461–493 (1992)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Wadler, P.: Monads for functional programming. In: Broy, M. (ed.) Program Design Calculi: Proceedings of the Marktoberdorf Summer School (1992)Google Scholar
  55. 55.
    Yi, W., Larsen, K.G.: Testing probabilistic and nondeterministic processes. In: Linn Jr., R.J., Uyar, M.Ü. (eds.) Protocol Specification, Testing and Verification, pp. 47–61. North-Holland (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jeremy Gibbons
    • 1
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK

Personalised recommendations