Advertisement

Boosted C5 Trees i-Biomarkers Panel for Invasive Bladder Cancer Progression Prediction

  • Alexandru George Floares
  • Irina Luludachi
  • Colin Dinney
  • Liana Adam
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7548)

Abstract

Bladder cancer is the fourth most common malignancy in men in the western countries. The aim of this study was to develop intelligent systems for invasive bladder cancer progression prediction. The proposed methodology combines knowledge discovery in data using artificial intelligence and knowledge mining. These are used both in feature selection and classifier development. The approach is designed to avoid overfitting and overoptimistic results. To our knowledge, these are the first intelligent systems for prediction of bladder cancer progression, based on boosted C5 decision trees, and their accuracy of 100% is the best published by now.

Keywords

C5 algorithm boosting invasive bladder cancer progression i-Biomarker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal, A., Siegel, R., Xu, J., Ward, E.: Cancer Statistics. CA Cancer J. Clin. (2010), doi:caac.20073Google Scholar
  2. 2.
    Tuma, R.S.: Biomarker Developers Face Big Hurdles. J. Natl. Cancer Inst. 100, 456–461 (2008)CrossRefGoogle Scholar
  3. 3.
    Dyrskjot, L., Zieger, K., Real, F.X., Malats, N., Carrato, A., Hurst, C., Kotwal, S., Knowles, M., Malmstrom, P., de la Torre, M., Wester, K., Allory, Y., Vordos, D., Caillault, A., Radvanyi, F., Hein, A.K., Jensen, J.L., Jensen, K.M.E., Marcussen, N., Orntoft, T.F.: Gene Expression Signatures Predict Outcome in Non Muscle-Invasive Bladder Carcinoma: A Multicenter Validation Study. Clinical Cancer Research 13, 3545–3551 (2007)CrossRefGoogle Scholar
  4. 4.
    Floares, A.G.: Using Computational Intelligence to Develop Intelligent Clinical Decision Support Systems. In: Masulli, F., Peterson, L.E., Tagliaferri, R. (eds.) CIBB 2009. LNCS (LNBI), vol. 6160, pp. 266–275. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Floares, A.G., Balacescu, O., Floares, C., Balacescu, L., Popa, T., Vermesan, O.: Mining knowledge and data to discover intelligent molecular biomarkers: prostate cancer i-biomarkers. In: 4th International Workshop on Soft Computing Applications (2010)Google Scholar
  6. 6.
    Floares, A.G., Floares, C., Vermesan, O., Popa, T., Williams, M., Ajibode, S., Chang-Gong, L., Lixia, D., Jing, W., Nicola, T., Jackson, D., Dinney, C., Adam, L.: Intelligent Clinical Decision Support Systems for Non-invasive Bladder Cancer Diagnosis. In: Rizzo, R., Lisboa, P.J.G. (eds.) CIBB 2010. LNCS (LNBI), vol. 6685, pp. 253–262. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Williams, M., Floares, A., Choi, W., Siefker-Radtke, A., McConkey, D., Dinney, C., Adam, L.: Prognostic significance of miR-200 family in bladder cancer progression. In: EMT and Cancer Progression and Treatment (2010)Google Scholar
  8. 8.
    Du, P., Kibbe, W.A., Lin, S.M.: lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008)CrossRefGoogle Scholar
  9. 9.
    Dupuy, A., Simon, R.M.: Critical Review of Published Microarray Studies for Cancer Outcome and Guidelines on Statistical Analysis and Reporting. Journal of the National Cancer Institute 99, 147–157 (2007)CrossRefGoogle Scholar
  10. 10.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)zbMATHGoogle Scholar
  11. 11.
    Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., San Francisco (1993)Google Scholar
  12. 12.
    Nisbet, R., Elder, J., Miner, G.: Handbook of Statistical Analysis and Data Mining Applications. Academic Press, Canada (2009)zbMATHGoogle Scholar
  13. 13.
    Seni, G., Elder, J.F.: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions. In: Han, J., Getoor, L., Wang, W., Hill, C., Gehrke, J., Grossman, J. (eds.) Synthesis Lectures on Data Mining and Knowledge Discovery. Morgan & Claypool, California (2010)Google Scholar
  14. 14.
    Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: 13th International Conference on Machine Learning (ICML), pp. 148–156 (1996)Google Scholar
  15. 15.
    Kim, W.J., Kim, E.J., Kim, S.K., Kim, Y.J., Ha, Y.S., Jeong, P., Kim, M.J., Yun, S.J., Lee, K., Moon, S.K., Lee, S.C., Cha, E.J., Bae, S.C.: Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Molecular Cancer 9, 3 (2010)CrossRefGoogle Scholar
  16. 16.
    Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Muertter, R.N., Holko, M., Ayanbule, O., Yefanov, A., Soboleva, A.: NCBI GEO: archive for functional genomics data sets – 10 years on. Nucleic Acids Research 39, D1005–D1010 (2011)CrossRefGoogle Scholar
  17. 17.
    Domingos, P.: The Role of Occam’s Razor in Knowledge Discovery. Data Mining and Knowledge Discovery 3, 409–425 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandru George Floares
    • 1
  • Irina Luludachi
    • 2
  • Colin Dinney
    • 3
  • Liana Adam
    • 3
  1. 1.Department of Artificial IntelligenceSAIA & OncoPredict & IOCNRomania
  2. 2.Department of Artificial IntelligenceSAIA & OncoPredictRomania
  3. 3.Department of UrologyUT-MD Anderson Cancer CenterHoustonUSA

Personalised recommendations