Connecting the Dots: Mass, Energy, Word Meaning, and Particle-Wave Duality

  • Sándor Darányi
  • Peter Wittek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7620)


With insight from linguistics that degrees of text cohesion are similar to forces in physics, and the frequent use of the energy concept in text categorization by machine learning, we consider the applicability of particle-wave duality to semantic content inherent in index terms. Wave-like interpretations go back to the regional nature of such content, utilizing functions for its representation, whereas content as a particle can be conveniently modelled by position vectors. Interestingly, wave packets behave like particles, lending credibility to the duality hypothesis. We show in a classical mechanics framework how metaphorical term mass can be computed.


Wave Packet Semantic Content Word Meaning Classical Mechanic Word Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khrennikov, A.: Ubiquitous quantum structure: from psychology to finance. Springer (2010)Google Scholar
  2. 2.
    Wittek, P., Darányi, S.: Spectral composition of semantic spaces. In: Proceedings of QI 2011, 5th International Quantum Interaction Symposium, Aberdeen, UK (2011)Google Scholar
  3. 3.
    LeCun, Y., Chopra, S., Hadsell, R.: A tutorial on energy-based learning. Predicting Structured Data, 1–59 (2006)Google Scholar
  4. 4.
    Erk, K.: Representing words as regions in vector space. In: Proceedings of CoNLL 2009, 13th Conference on Computational Natural Language Learning, Boulder, CO, USA, pp. 57–65 (2009)Google Scholar
  5. 5.
    Park, L., Palaniswami, M., Kotagiri, R.: Internet document filtering using Fourier domain scoring. LNCS, pp. 362–373 (2001)Google Scholar
  6. 6.
    Park, L.: Spectral Based Information Retrieval. PhD thesis, University of Melbourne (2003)Google Scholar
  7. 7.
    Dorrer, C., Londero, P., Anderson, M., Wallentowitz, S., Walmsley, I.: Computing with interference: all-optical single-query 50-element database search. In: Proceedings of QELS 2001, Quantum Electronics and Laser Science Conference, pp. 149–150 (2001)Google Scholar
  8. 8.
    Buriol, L., Castillo, C., Donato, D., Leonardi, S., Millozzi, S.: Temporal analysis of the wikigraph. In: Proceedings of WI 2006, 5th International Conference on Web Intelligence, Hong Kong, pp. 45–51 (2006)Google Scholar
  9. 9.
    Lin, Y., Sundaram, H., Chi, Y., Tatemura, J., Tseng, B.: Detecting splogs via temporal dynamics using self-similarity analysis. ACM Transactions on the Web 2(1) (2008)Google Scholar
  10. 10.
    Fujimura, K., Fujimura, S., Matsubayashi, T., Yamada, T., Okuda, H.: Topigraphy: visualization for large-scale tag clouds. In: Proceedings of WWW 2008, 17th International Conference on World Wide Web, Beijing, China, pp. 1087–1088 (2008)Google Scholar
  11. 11.
    Jurgens, D., Stevens, K.: Event detection in blogs using temporal random indexing. In: Proceedings of the Workshop on Events in Emerging Text Types, Wolverhampton, UK, pp. 9–16 (2009)Google Scholar
  12. 12.
    White, H.: Cross-textual cohesion and coherence. In: Proceedings of the Workshop on Discourse Architectures: The Design and Analysis of Computer-Mediated Conversation, Minneapolis, MN, USA (2002)Google Scholar
  13. 13.
    Foltz, P.W., Kintsch, W., Landauer, T.K.: The measurement of textual coherence with latent semantic analysis. Discourse Processes 25(2-3), 285–307 (1998)CrossRefGoogle Scholar
  14. 14.
    Gärdenfors, P.: Conceptual spaces: The geometry of thought. The MIT Press (2000)Google Scholar
  15. 15.
    Beeferman, D., Berger, A., Lafferty, J.: A model of lexical attraction and repulsion. In: Proceedings of ACL 1997, 35th Annual Meeting of the Association for Computational Linguistics, Madrid, Spain, pp. 373–380 (1997)Google Scholar
  16. 16.
    Yuret, D.: Discovery of linguistic relations using lexical attraction. Arxiv preprint cmp-lg/9805009 (1998)Google Scholar
  17. 17.
    Hutchens, J.: Infomagnetism and sentence generation. Technical report, Artificial Intelligence (2001)Google Scholar
  18. 18.
    Azzopardi, L.: Wave motion: A new metaphor for 2d information visualization the exploration of a metaphor. Technical report, University of Newcastle (2000)Google Scholar
  19. 19.
    Bruce, E.: Biomedical signal processing and signal modeling. Wiley-Interscience (2001)Google Scholar
  20. 20.
    Wang, C., Wang, X.: Indexing very high-dimensional sparse and quasi-sparse vectors for similarity searches. The VLDB Journal 9(4), 344–361 (2001)zbMATHGoogle Scholar
  21. 21.
    Chatterjee, A., Bhowmick, S., Raghavan, P.: FAST: Force-directed approximate subspace transformation to improve unsupervised document classification. In: Proceedings of 6th Text Mining Workshop held in Conjunction with SIAM International Conference on Data Mining, Atlanta, GA, USA (2008)Google Scholar
  22. 22.
    Giraud, C.: Gravitational clustering and additive coalescence. Stochastic Processes and Their Applications 115(8), 1302–1322 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Oyang, Y.-J., Chen, C.-Y., Yang, T.-W.: A Study on the Hierarchical Data Clustering Algorithm Based on Gravity Theory. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 350–361. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Physical Review Letters 76(18), 3251–3254 (1996)CrossRefGoogle Scholar
  25. 25.
    Xiao-dan, W., Dian-min, Y., Feng-li, L., Chao-hsien, C.: Distributed model based sampling technique for privacy preserving clustering. In: Proceedings of ICMSE 2007, International on Conference on Management Science and Engineering, pp. 192–197 (2007)Google Scholar
  26. 26.
    Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. The VLDB Journal 8(3), 289–304 (2000)CrossRefGoogle Scholar
  27. 27.
    Horn, D., Gottlieb, A.: The method of quantum clustering. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, Vancouver, Canada, vol. 14, pp. 769–776 (2001)Google Scholar
  28. 28.
    Weinstein, M., Horn, D.: Dynamic quantum clustering: A method for visual exploration of structures in data. Physical Review E 80(6), 066117 (2009)Google Scholar
  29. 29.
    Di Buccio, E., Di Nunzio, G.M.: Envisioning Dynamic Quantum Clustering in Information Retrieval. In: Song, D., Melucci, M., Frommholz, I., Zhang, P., Wang, L., Arafat, S. (eds.) QI 2011. LNCS, vol. 7052, pp. 211–216. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Harris, Z.: Distributional structure. In: Harris, Z. (ed.) Papers in Structural and Transformational Linguistics. Formal Linguistics, pp. 775–794. Humanities Press, New York (1970)Google Scholar
  31. 31.
    Carnap, R.: Meaning and Necessity: A Study in Semantics and Modal Logic. University Of Chicago Press, Chicago (1947)zbMATHGoogle Scholar
  32. 32.
    Lehrer, A.: Semantic fields and lexical structure. American Elsevier, New York (1975)Google Scholar
  33. 33.
    Dyvik, H.: Translations as a semantic knowledge source. In: Proceedings of HLT 2005, 2nd Baltic Conference on Human Language Technologies, Tallinn, Estonia (2005)Google Scholar
  34. 34.
    Priss, U., Old, L.: Conceptual exploration of semantic mirrors. In: Proceedings of ICFCA 2005, 3rd International Conference on Formal Concept Analysis, Lens, France (2005)Google Scholar
  35. 35.
    Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice-Hall, Inc., Upper Saddle River (1971)Google Scholar
  36. 36.
    Bruza, P., Woods, J.: Quantum collapse in semantic space: interpreting natural language argumentation. In: Proceedings of QI 2008, 2nd International Symposium on Quantum Interaction, Oxford, UK (2008)Google Scholar
  37. 37.
    Widdows, D.: Semantic vector products: Some initial investigations. In: Proceedings of QI 2008, 2nd International Symposium on Quantum Interaction, Oxford, UK (2008)Google Scholar
  38. 38.
    Zuccon, G., Azzopardi, L.A., van Rijsbergen, C.J.: Semantic Spaces: Measuring the Distance between Different Subspaces. In: Bruza, P., Sofge, D., Lawless, W., van Rijsbergen, K., Klusch, M. (eds.) QI 2009. LNCS, vol. 5494, pp. 225–236. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  39. 39.
    Wittek, P., Darányi, S.: Representing word semantics for IR by continuous functions. In: Dominich, S., Kiss, F. (eds.) Proceedings of ICTIR 2007, 1st International Conference of the Theory of Information Retrieval, Budapest, Hungary, pp. 149–155 (2007)Google Scholar
  40. 40.
    Wittek, P., Tan, C.L.: Compactly supported basis functions as support vector kernels for classification. Transactions on Pattern Analysis and Machine Intelligence 33(10), 2039–2050 (2011)CrossRefGoogle Scholar
  41. 41.
    Peng, L., Chen, Y., Yang, B., Chen, Z.: A novel classification method based on data gravitation. In: Proceedings of ICNNB 2005, International Conference on Neural Networks and Brain, Beijing, China, pp. 667–672 (2005)Google Scholar
  42. 42.
    Salton, G.: Dynamic information and library processing (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sándor Darányi
    • 1
  • Peter Wittek
    • 1
  1. 1.Swedish School of Library and Information ScienceUniversity of BoråsBoråsSweden

Personalised recommendations