Dynamical Modeling and Parameter Identification of Seismic Isolation Systems by Evolution Strategies

  • Anastasia AthanasiouEmail author
  • Matteo De Felice
  • Giuseppe Oliveto
  • Pietro S. Oliveto
Part of the Studies in Computational Intelligence book series (SCI, volume 465)


An application of Evolution Strategies (ESs) to the dynamic identification of hybrid seismic isolation systems is presented. It is shown how ESs are highly effective for the optimisation of the test problem defined in previous work for methodology validation. The acceleration records of a number of dynamic tests performed on a seismically isolated building are used as reference data for the parameter identification. The application of CMA-ES to a previously existing model considerably improves previous results but at the same time reveals limitations of the model. To investigate the problem three new mechanical models with higher number of parameters are developed. The application of CMA-ES to the best designed model allows improvements of up to 79% compared to the solutions previously available in literature.


Earthquake engineering Structural system identification Evolution strategies CMA-ES Real-world applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Athanasiou, A., De Felice, M., Oliveto, G., Oliveto, P.S.: Evolutionary algorithms for the identification of structural systems in earthquake engineering. In: International Conference on Evolutionary Computation Theory and Applications, pp. 52–62 (2011)Google Scholar
  2. 2.
    Athanasiou, A., Oliveto, G.: Upper and lower bounds for the parameter vector in dynamic identification of hybrid base isolation systems. In: Conference in Honour of Prof. Guido Sara’: Lezioni dai Terremoti: Fonti di Vulnerabilita’, Nuove Strategie Progettuali, Sviluppi Normativi, Chianciano Terme, Siena, Italy (2010)Google Scholar
  3. 3.
    Athanasiou, A., Oliveto, G.: Modelling hybrid base isolation systems for free vibration simulations. In: 8CUEE: Proceedings of the 8th International Conference on Urban Earthquake Engineering, Tokyo, Japan, pp. 1293–1302 (2011)Google Scholar
  4. 4.
    Auger, A., Hansen, N.: Theory of evolution strategies: A new perspective. In: Auger, A., Doerr, B. (eds.) Theory of Randomized Heuristics - Foundations and Recent Developments, pp. 289–325. World Scientific (2011)Google Scholar
  5. 5.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies, a comprehensive introduction. Natural Computing 1, 3–52 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Braga, F., Laterza, M.: Field testing of low-rise base isolated buildings. Engineering Structures 26, 1599–1610 (2004)CrossRefGoogle Scholar
  7. 7.
    Braga, F., Laterza, M., Gigliotti, R., Laterza, M.: Nonlinear dynamic response of HRDB and hybrid HRDB-friction sliders base isolation systems. Bullettin of Earthquake Engineering 3, 333–353 (2005)CrossRefGoogle Scholar
  8. 8.
    Devroye, R.: The compound random search. In: International Symposium on Systems Engineering and Analysis, pp. 195–210. Purdue University (1972)Google Scholar
  9. 9.
    Hansen, N., Niederberger, S., Guzzella, L., Koumoutsakos, P.: A method for handling uncertainty in evolutionary optimization with an application to feedback control of combustion. IEEE Transactions on Evolutionary Computation 13(1), 180–197 (2009)CrossRefGoogle Scholar
  10. 10.
    Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)CrossRefGoogle Scholar
  11. 11.
    Jägersküpper, J.: Analysis of a Simple Evolutionary Algorithm for Minimization in Euclidean Spaces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1068–1079. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kasai, K. (ed.): Special Issue on Japan’s Advanced Technology for Building Seismic Protection. Journal of Disaster Research, vol. 4(3) (2009)Google Scholar
  13. 13.
    Kasai, K.: Response-Controlled Structures, Tohoku Pacific Ocean Earthquake. Clearinghouse at International Center for Urban Earthquake Engineering, Tokyo Institute of Technology, Japan (2011)Google Scholar
  14. 14.
    Kern, S., Müller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary algorithms - a comparative review. Natural Computing 3, 77–112 (2003)CrossRefGoogle Scholar
  15. 15.
    Moroni, M., Sarazzin, M., Boroshek, R.: Experiments on a base-isolated building in Santiago, Chile. Engineering Structures 20(8), 720–725 (1998)CrossRefGoogle Scholar
  16. 16.
    Oliveto, G., Markou, A.A., Athanasiou, A.: Recent advances in dynamic identification and response simulation of hybrid base isolation systems. In: 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, September 24-28 (to appear, 2012)Google Scholar
  17. 17.
    Oliveto, N.D., Scalia, G., Oliveto, G.: Time domain identification of hybrid base isolation systems using free vibration tests. Earthquake Engineering and Structural Dynamics 39(9), 1015–1038 (2010)Google Scholar
  18. 18.
    Ravindran, A., Ragsdell, K.M., Reklaitis, G.V. (eds.): Engineering Optimization: Methods and Applications, 2nd edn. John Wiley & Sons, Inc., New Jersey (2006)Google Scholar
  19. 19.
    Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart (1973)Google Scholar
  20. 20.
    Schumer, M., Steiglitz, K.: Adaptive step size random search. IEEE Transactions on Automatic Control 13, 270–276 (1968)CrossRefGoogle Scholar
  21. 21.
    Schwefel, H.-P. (ed.): Evolution and Optimum Seeking: The Sixth Generation. John Wiley & Sons, Inc., New York (1993)Google Scholar
  22. 22.
    Seki, M., Miyazaki, M., Tsuneki, Y., Kataoka, K.: A masonry school buiding retrofitted by base isolation. In: 12th World Conference on Earthquake Engineering (12WCEE), Auckland, New Zealand (2000)Google Scholar
  23. 23.
    Wada, A., Constantinou, M.C., (eds.): Special Issue on Seismic Protection Techniques. Earthquake Engineering and Structural Dynamics, vol. 39(13) (2010)Google Scholar
  24. 24.
    White, R.: A survey of random methods for parameter optimization. Simulation 17, 197–205 (1971)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anastasia Athanasiou
    • 1
    Email author
  • Matteo De Felice
    • 2
  • Giuseppe Oliveto
    • 1
  • Pietro S. Oliveto
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of CataniaCataniaItaly
  2. 2.Energy and Environment Modeling Technical UnitENEARomeItaly
  3. 3.School of Computer ScienceThe University of BirminghamBirminghamU.K.

Personalised recommendations