Advertisement

Incremental Social Learning in Swarm Intelligence Algorithms for Continuous Optimization

  • Marco A. Montes de Oca
Part of the Studies in Computational Intelligence book series (SCI, volume 465)

Abstract

Swarm intelligence is the collective problem-solving behavior of groups of animals and artificial agents. Often, swarm intelligence is the result of self-organization, which emerges from the agents’ local interactions with one another and with their environment. Such local interactions can be positive, negative, or neutral. Positive interactions help a swarm of agents solve a problem. Negative interactions are those that block or hinder the agents’ task-performing behavior. Neutral interactions do not affect the swarm’s performance. Reducing the effects of negative interactions is one of the main tasks of a designer of effective swarm intelligence systems. Traditionally, this has been done through the complexification of the behavior and/or the characteristics of the agents that comprise the system, which limits scalability and increases the difficulty of the design task. In collaboration with colleagues, I have proposed a framework, called incremental social learning (ISL), as a means to reduce the effects of negative interactions without complexifying the agents’ behavior or characteristics. In this paper, I describe the ISL framework and three instantiations of it, which demonstrate the framework’s effectiveness. The swarm intelligence systems used as case studies are the particle swarm optimization algorithm, ant colony optimization algorithm for continuous domains, and the artificial bee colony optimization algorithm.

Keywords

Local Search Multiagent System Negative Interaction Swarm Intelligence Local Search Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), pp. 1769–1776. IEEE Press, Piscataway (2005)CrossRefGoogle Scholar
  2. 2.
    Aydın, D., Liao, T., Montes de Oca, M.A., Stützle, T.: Improving performance via population growth and local search: The case of the artificial bee colony algorithm. In: Proceedings of the International Conference on Artificial Evolution, EA 2011 (2011) (to appear)Google Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  4. 4.
    Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)Google Scholar
  5. 5.
    Couzin, I.D.: Collective minds. Nature 445(7129), 715 (2007)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Birattari, M.: Swarm intelligence. Scholarpedia 2(9), 1462 (2007), http://dx.doi.org/10.4249/scholarpedia.1462 CrossRefGoogle Scholar
  7. 7.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. Bradford Books. MIT Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  8. 8.
    Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Whitley, D.L. (ed.) Foundation of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann, San Mateo (1993)Google Scholar
  9. 9.
    Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intelligence 1(1), 3–31 (2007)CrossRefGoogle Scholar
  10. 10.
    Gershenson, C.: Design and control of self-organizing systems. Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium (2007)Google Scholar
  11. 11.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the argentine ant. Naturwissenschaften 76(12), 579–581 (1989)Google Scholar
  12. 12.
    Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6(1), 41–80 (1959)Google Scholar
  13. 13.
    Handl, J., Meyer, B.: Ant-based and swarm-based clustering. Swarm Intelligence 1(2), 95–113 (2007)CrossRefGoogle Scholar
  14. 14.
    Helbing, D., Vicsek, T.: Optimal self-organization. New Journal of Physics 1, 13.1–13.17 (1999)Google Scholar
  15. 15.
    Herrera, F., Lozano, M., Molina, D.: Test suite for the special issue of soft computing on scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems (2010), http://sci2s.ugr.es/eamhco/updated-functions1-19.pdf (last accessed: July 2010)
  16. 16.
    Hsieh, S.T., Sun, T.Y., Liu, C.C., Tsai, S.J.: Efficient population utilization strategy for particle swarm optimizer. IEEE Transactions on Systems, Man, and Cybernetics 39(2), 444–456 (2009)CrossRefGoogle Scholar
  17. 17.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)CrossRefGoogle Scholar
  19. 19.
    Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and Autonomous Systems 30(1-2), 85–101 (2000)CrossRefGoogle Scholar
  20. 20.
    Liao, T., Montes de Oca, M.A., Aydın, D., Stützle, T., Dorigo, M.: An incremental ant colony algorithm with local search for continuous optimization. In: Krasnogor, N., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2011), pp. 125–132. ACM Press, New York (2011)Google Scholar
  21. 21.
    Lobo, F.G., Lima, C.F.: Adaptive Population Sizing Schemes in Genetic Algorithms. In: Parameter Setting in Evolutionary Algorithms. SCI, vol. 54, pp. 185–204. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  22. 22.
    Lozano, M., Molina, D., Herrera, F.: Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft Computing 15(11), 2085–2087 (2011)CrossRefGoogle Scholar
  23. 23.
    Matarić, M.J.: Learning social behavior. Robotics and Autonomous Systems 20(2-4), 191–204 (1997)CrossRefGoogle Scholar
  24. 24.
    Montes de Oca, M.A.: Incremental social learning in swarm intelligence systems. Ph.D. thesis, Université Libre de Bruxelles, Brussels, Belgium (2011)Google Scholar
  25. 25.
    Montes de Oca, M.A., Aydın, D., Stützle, T.: An incremental particle swarm for large-scale optimization problems: An example of tuning-in-the-loop (re)design of optimization algorithms. Soft Computing 15(11), 2233–2255 (2011)CrossRefGoogle Scholar
  26. 26.
    Montes de Oca, M.A., Stützle, T.: Towards incremental social learning in optimization and multiagent systems. In: Rand, W., et al. (eds.) Workshop on Evolutionary Computation and Multiagent Systems Simulation of the Genetic and Evolutionary Computation Conference (GECCO 2008), pp. 1939–1944. ACM Press, New York (2008)Google Scholar
  27. 27.
    Montes de Oca, M.A., Stützle, T., Birattari, M., Dorigo, M.: Frankenstein’s PSO: A composite particle swarm optimization algorithm. IEEE Transactions on Evolutionary Computation 13(5), 1120–1132 (2009)CrossRefGoogle Scholar
  28. 28.
    Montes de Oca, M.A., Stützle, T., Birattari, M., Dorigo, M.: Incremental social learning applied to a decentralized decision-making mechanism: Collective learning made faster. In: Gupta, I., Hassas, S., Rolia, J. (eds.) Proceedings of the Fourth IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO 2010), pp. 243–252. IEEE Computer Society Press, Los Alamitos (2010)Google Scholar
  29. 29.
    Montes de Oca, M.A., Stützle, T., Van den Enden, K., Dorigo, M.: Incremental social learning in particle swarms. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 41(2), 368–384 (2011)CrossRefGoogle Scholar
  30. 30.
    Montes de Oca, M.A., Van den Enden, K., Stützle, T.: Incremental Particle Swarm-Guided Local Search for Continuous Optimization. In: Blesa, M.J., Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E., Roli, A., Sampels, M. (eds.) HM 2008. LNCS, vol. 5296, pp. 72–86. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, Article ID 685175, 10 pages (2008)Google Scholar
  32. 32.
    Powell, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7(2), 155–162 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European Journal of Operational Research 185(3), 1155–1173 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Storn, R.M., Price, K.V.: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Stützle, T., López-Ibáñez, M., Dorigo, M.: A concise overview of applications of ant colony optimization. In: Cochran, J.J., et al. (eds.) Wiley Encyclopedia of Operations Research and Management Science, vol. 2, pp. 896–911. John Wiley & Sons, Ltd., New York (2011)Google Scholar
  36. 36.
    Tseng, L., Chen, C.: Multiple trajectory search for large scale global optimization. In: Proceeding of the IEEE 2008 Congress on Evolutionary Computation (CEC 2008), pp. 3052–3059. IEEE Press, Piscataway (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkU.S.A.

Personalised recommendations