Computational Intelligence pp 317-332 | Cite as
Semi-supervised K-Way Spectral Clustering with Determination of Number of Clusters
- 3 Citations
- 944 Downloads
Abstract
In this paper, we propose a new K-way semi-supervised spectral clustering method able to estimate the number of clusters automatically and then to integrate some limited supervisory information. Indeed, spectral clustering can be guided thanks to the provision of prior knowledge. For the automatic determination of the number of clusters, we propose to use a criterion based on an outlier number minimization. Then, the prior knowledge consists of pairwise constraints which indicate whether a pair of objects belongs to a same cluster (Must-Link constraints) or not (Cannot-Link constraints). The spectral clustering then aims at optimizing a cost function built as a classical Multiple Normalized Cut measure, modified in order to penalize the non-respect of these constraints. We show the relevance of the proposed method with some UCI datasets. For experiments, a comparison with other semi-supervised clustering algorithms using pairwise constraints is proposed.
Keywords
Spectral embedding Within-cluster cohesion Semi-supervised clustering Pairwise constraintsPreview
Unable to display preview. Download preview PDF.
References
- 1.Cevikalp, H., Verbeek, J.: Semi-supervised dimensionality reduction using pairwise equivalence constraints. In: International Conference on Computer Vision Theory and Applications, pp. 489–496 (2008)Google Scholar
- 2.Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers (2006)Google Scholar
- 3.Kamvar, S., Klein, D., Manning, C.: Spectral Learning. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 561–566 (2003)Google Scholar
- 4.Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS12 Neural Information Processing Systems, pp. 873–879 (2000)Google Scholar
- 5.Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS14 Neural Information Processing Systems, pp. 849–856 (2002)Google Scholar
- 6.Sanguinetti, G., Laidler, J., Lawrence, N.: Automatic determination of the number of clusters using spectral algorithms. IEEE Machine Learning for Signal Processing, 28–30 (2005)Google Scholar
- 7.Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI Transactions on Pattern Analysis and Machine Intelligence, 888–905 (2000)Google Scholar
- 8.Shortreed, S., Meila, M.: Unsupervised spectral learning. In: Proceedings of the Twenty-First Conference Annual on Uncertainty in Artificial Intelligence, pp. 543–416 (2005)Google Scholar
- 9.Von Luxburg, U.: A Tutorial on Spectral Clustering. Statistics and Computing, 395–416 (2007)Google Scholar
- 10.Wacquet, G., Hébert, P.-A., Caillault, E., Hamad, D.: Semi-Supervised K-Way Spectral Clustering using Pairwise Constraints. In: NCTA, International Conference on Neural Computation Theory and Applications, pp. 72–81 (2011)Google Scholar
- 11.Wagstaff, K., Cardie, C.: Clustering with Instance-level Constraints. In: ICML International Conference on Machine Learning, pp. 1103–1110 (2002)Google Scholar
- 12.Wang, X., Davidson, I.: Flexible Constrained Spectral Clustering. In: KDD International Conference on Knowledge Discovery and Data Mining, pp. 563–572 (2010)Google Scholar
- 13.Weiss, Y.: Segmentation using eigenvectors: an unifying view. In: IEEE International Conference on Computer Vision, pp. 975–982 (1999)Google Scholar
- 14.White, S., Smyth, P.: A Spectral Clustering Approach to Finding Communities in Graphs. In: SIAM International Conference on Data Mining (2005)Google Scholar
- 15.Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS Advances in Neural Information Processing Systems, pp. 1601–1608 (2004)Google Scholar
- 16.Zhang, D., Zhou, Z.-H., Chen, S.: Semi-supervised dimensionality reduction. In: SIAM 7th International Conference on Data Mining, pp. 629–634 (2007)Google Scholar