Computational Intelligence pp 317-332

Part of the Studies in Computational Intelligence book series (SCI, volume 465) | Cite as

Semi-supervised K-Way Spectral Clustering with Determination of Number of Clusters

  • Guillaume Wacquet
  • Émilie Poisson-Caillault
  • Pierre-Alexandre Hébert

Abstract

In this paper, we propose a new K-way semi-supervised spectral clustering method able to estimate the number of clusters automatically and then to integrate some limited supervisory information. Indeed, spectral clustering can be guided thanks to the provision of prior knowledge. For the automatic determination of the number of clusters, we propose to use a criterion based on an outlier number minimization. Then, the prior knowledge consists of pairwise constraints which indicate whether a pair of objects belongs to a same cluster (Must-Link constraints) or not (Cannot-Link constraints). The spectral clustering then aims at optimizing a cost function built as a classical Multiple Normalized Cut measure, modified in order to penalize the non-respect of these constraints. We show the relevance of the proposed method with some UCI datasets. For experiments, a comparison with other semi-supervised clustering algorithms using pairwise constraints is proposed.

Keywords

Spectral embedding Within-cluster cohesion Semi-supervised clustering Pairwise constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cevikalp, H., Verbeek, J.: Semi-supervised dimensionality reduction using pairwise equivalence constraints. In: International Conference on Computer Vision Theory and Applications, pp. 489–496 (2008)Google Scholar
  2. 2.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers (2006)Google Scholar
  3. 3.
    Kamvar, S., Klein, D., Manning, C.: Spectral Learning. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 561–566 (2003)Google Scholar
  4. 4.
    Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS12 Neural Information Processing Systems, pp. 873–879 (2000)Google Scholar
  5. 5.
    Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS14 Neural Information Processing Systems, pp. 849–856 (2002)Google Scholar
  6. 6.
    Sanguinetti, G., Laidler, J., Lawrence, N.: Automatic determination of the number of clusters using spectral algorithms. IEEE Machine Learning for Signal Processing, 28–30 (2005)Google Scholar
  7. 7.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI Transactions on Pattern Analysis and Machine Intelligence, 888–905 (2000)Google Scholar
  8. 8.
    Shortreed, S., Meila, M.: Unsupervised spectral learning. In: Proceedings of the Twenty-First Conference Annual on Uncertainty in Artificial Intelligence, pp. 543–416 (2005)Google Scholar
  9. 9.
    Von Luxburg, U.: A Tutorial on Spectral Clustering. Statistics and Computing, 395–416 (2007)Google Scholar
  10. 10.
    Wacquet, G., Hébert, P.-A., Caillault, E., Hamad, D.: Semi-Supervised K-Way Spectral Clustering using Pairwise Constraints. In: NCTA, International Conference on Neural Computation Theory and Applications, pp. 72–81 (2011)Google Scholar
  11. 11.
    Wagstaff, K., Cardie, C.: Clustering with Instance-level Constraints. In: ICML International Conference on Machine Learning, pp. 1103–1110 (2002)Google Scholar
  12. 12.
    Wang, X., Davidson, I.: Flexible Constrained Spectral Clustering. In: KDD International Conference on Knowledge Discovery and Data Mining, pp. 563–572 (2010)Google Scholar
  13. 13.
    Weiss, Y.: Segmentation using eigenvectors: an unifying view. In: IEEE International Conference on Computer Vision, pp. 975–982 (1999)Google Scholar
  14. 14.
    White, S., Smyth, P.: A Spectral Clustering Approach to Finding Communities in Graphs. In: SIAM International Conference on Data Mining (2005)Google Scholar
  15. 15.
    Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NIPS Advances in Neural Information Processing Systems, pp. 1601–1608 (2004)Google Scholar
  16. 16.
    Zhang, D., Zhou, Z.-H., Chen, S.: Semi-supervised dimensionality reduction. In: SIAM 7th International Conference on Data Mining, pp. 629–634 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Wacquet
    • 1
  • Émilie Poisson-Caillault
    • 1
  • Pierre-Alexandre Hébert
    • 1
  1. 1.LISIC - Lab. of Computing, Signal and Image Processing in Côte d’OpaleUniversité Lille Nord de France, ULCOCalaisFrance

Personalised recommendations