Computational Intelligence pp 213-240

Part of the Studies in Computational Intelligence book series (SCI, volume 465)

| Cite as

Fuzzy Median and Min-Max Centers: An Spatiotemporal Solution of Optimal Location Problems with Bidimensional Trapezoidal Fuzzy Numbers

  • Julio Rojas-Mora
  • Didier Josselin
  • Marc Ciligot-Travain

Abstract

The calculation of the center of a set of points in an open space, subject to a given metric, has been a widely explored topic in operations research. In this paper, we present the extension of two of these centers, the median and the min-max centers, when there is uncertainty in the location of the points. These points, modeled by two-dimensional trapezoidal fuzzy numbers (TrFN), induce uncertainties in the distance between them and the center, causing that the resulting center may also be a two-dimensional TrFN. The solution gives flexibility to planners, as the value of the membership function at any given coordinate can be seen as a degree of “appropriateness” of the final location of the center. We further consider how to model the existing space constraints and what is their effect on the calculated centers. Finally, in the case of temporal analysis, we can determine the durability of the location of the center at a given point of the study area.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brandeau, M.L., Sainfort, F., Pierskalla, W.P. (eds.): Operations research and health care: A handbook of methods and applications. Kluwer Academic Press, Dordrecht (2004)MATHGoogle Scholar
  2. 2.
    Canós, M.J., Ivorra, C., Liern, V.: An exact algorithm for the fuzzy p-median problem. European Journal of Operational Research 116, 80–86 (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Chan, Y.: Location Transport and Land-Use: Modelling Spatial-Temporal Information. Springer, Berlin (2005)Google Scholar
  4. 4.
    Chen, C.-T.: A fuzzy approach to select the location of the distribution center. Fuzzy Sets and Systems 118, 65–73 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Chen, S.-H., Hsieh, C.-H.: Graded mean integration representation of generalized fuzzy number. Journal of Chinese Fuzzy System 5(2), 1–7 (1999)Google Scholar
  6. 6.
    Chen, S.-H., Wang, C.-C.: Fuzzy distance using fuzzy absolute value. In: Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, Baoding (2009)Google Scholar
  7. 7.
    Ciligot-Travain, M., Josselin, D.: Impact of the Norm on Optimal Locations. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2009, Part I. LNCS, vol. 5592, pp. 426–441. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Darzentas, J.: On fuzzy location model. In: Kacprzyk, J., Orlovski, S.A. (eds.) Optimization Models Using Fuzzy Sets and Possibility Theory, pp. 328–341. D. Reidel, Dordrecht (1987)Google Scholar
  9. 9.
    Drezner, Z., Hamacher, H.W. (eds.): Facility location. Applications and theory. Springer, Berlin (2004)Google Scholar
  10. 10.
    Dubois, D., Prade, H.: Fuzzy real algebra: some results. Fuzzy Sets and Systems 2, 327–348 (1979)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Griffith, D.A., Amrhein, C.G., Huriot, J.M. (eds.): Econometric advances in spatial modelling and methodology. Essays in honour of Jean Paelinck. Advanced studies in theoretical and applied econometrics, vol. 35 (1998)Google Scholar
  12. 12.
    Hakimi, S.L.: Optimum locations of switching center and the absolute center and medians of a graph. Operations Research 12, 450–459 (1964)MATHCrossRefGoogle Scholar
  13. 13.
    Hansen, P., Labbé, M., Peeters, D., Thisse, J.F., Vernon Henderson, J.: Systems of cities and facility locations. In: Fundamentals of Pure and Applied Economics. Harwood Academic Publisher, London (1987)Google Scholar
  14. 14.
    Kaufmann, A., Gupta, M.M.: Introduction to Fuzzy Arithmetic. Van Nostrand Reinhold, New York (1985)MATHGoogle Scholar
  15. 15.
    Labbé, M., Peeters, D., Thisse, J.F.: Location on networks. In: Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds.) Handbook of Operations Research and Management Science: Network Routing, vol. 8, pp. 551–624. North Holland, Amsterdam (1995)Google Scholar
  16. 16.
    Moreno Pérez, J.A., Marcos Moreno Vega, J., Verdegay, J.L.: Fuzzy location problems on networks. Fuzzy Sets and Systems 142, 393–405 (2004)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Nickel, S., Puerto, J.: Location theory. A unified approach. Springer, Berlin (2005)MATHGoogle Scholar
  18. 18.
    Thomas, I.: Transportation Networks and the Optimal Location of Human Activities, a numerical geography approach. Transport Economics, Management and Policy. Edward Elgar, Northampton (2002)Google Scholar
  19. 19.
    Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Zimmermann, H.-J.: Fuzzy Sets. In: Theory and its Applications, 4th edn. Springer (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Julio Rojas-Mora
    • 1
  • Didier Josselin
    • 1
  • Marc Ciligot-Travain
    • 2
  1. 1.UMR Espace 7300 CNRSUniversity of Avignon (UAPV)AvignonFrance
  2. 2.LANGL, University of Avignon (UAPV)AvignonFrance

Personalised recommendations