Flax (Linum usitatissimum L.) and Hemp (Cannabis sativa L.) as Fibre Crops for Phytoextraction of Heavy Metals: Biological, Agro-technological and Economical Point of View

Part of the Soil Biology book series (SOILBIOL, volume 35)


Fibre crops are world-wide distributed group of plant species belonging taxonomically to various plant families. The common denominator is their use of above-ground biomass for mainly industrial (non-food) or energy purposes. They include approximately 2,000 species—annual and perennial—belonging to monocotyledonous as well as dicotyledonous plants. About 20 species have got an economical (some of them local) importance. Majority of fibre species is grown in tropical and subtropical zones. Cellulose, a natural polymer with high strength and stiffness per weight, is the building material of long fibrous cells, which can be found in the stems, the leaves or the fruits/seeds of fibre plants. Thus, based on the fibrous cells localisation within the plant, we can recognise bast fibre species (e.g. flax, hemp, jute, kenaf, ramie and sida), leaf fibre species (sisal, banana and palm) and fruit/seed fibre species (cotton, coconut, kapok and luffa). During last 20 years, the fibre crops have been also considered as potential candidates for phytoremediation, particularly for phytoextraction of heavy metals from contaminated soils. Within fibre crops of temperate and subtropical zone, flax/linseed and hemp represent economically the most important species and also the majority of heavy metal-related experimental data were obtained and published in these two fibre crops. Here we bring information on biological potential of flax and hemp for heavy metal phytoextraction, the possibilities of agrotechnological treatments to affect/improve heavy metal uptake and, finally, the economical assessment of phytoremediation technology for flax and hemp growers and phytoremediation operators.


Heavy Metal Hemp Fibre Flax Seed Fibre Crop Flax Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This review was prepared with partial financial support of the COST Action FA0905 – grant No. LD 11053.


  1. Abbo S, Lev-Yadun S, Gopher A (2010) Agricultural origins: centers and noncenters; A near eastern reappraisal. Crit Rev Plant Sci 29:317–328CrossRefGoogle Scholar
  2. Abel E (1980) Marihuana: the first twelve thousand years. Plenum, New York, NYGoogle Scholar
  3. Allaby RG, Peterson GW, Merriwether A, Fu YB (2005) Evidence of the domestication history of flax (Linum usitatissimum) from genetic diversity of the sad2 locus. Theor Appl Genet 112: 58–65PubMedCrossRefGoogle Scholar
  4. Angelova V, Ivanova R, Delibaltova V, Ivanov K (2004) Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Ind Crops Prod 19:197–205CrossRefGoogle Scholar
  5. Anonymous (1988) Richtwert für cadmium in Leinsamen. Bundesgesundhbl 31:31Google Scholar
  6. Antonkiewicz J, Jasiewicz C, Ryant P (2004) The use of heavy metal accumulating plants for detoxication of chemically polluted soils. Acta Univ Agric Silvic Mendel Brun LII:113–120Google Scholar
  7. Arru L, Rognoni S, Baroncini M, Bonatti P, Pierdomenico P (2004) Copper localization in Cannabis sativa L. grown in copper-rich solution. Euphytica 140:33–38CrossRefGoogle Scholar
  8. Baker AJM (1981) Accumulators and excluders - strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  9. Baraniecki P, Mankowski J (1995) Hemp fibre as a raw material for paper production in the aspect of natural environment protection. Agric Eng 41:85–88Google Scholar
  10. Baraniecki P, Grabowska L, Mankowski J (1995) Flax and hemp in areas made derelict by the copper industry. Nat Fibres XXXIX:79–85Google Scholar
  11. Baraniecki P, Kozlowski R, Grabowska L (2001) The INF experience in phytoremediation of heavy metal polluted soil by cultivation of hemp and flax. Nat Fibres (Spl 2nd edn.) IV(2):1–8Google Scholar
  12. Becher M, Wörner, Schubert S (1997) Cd translocation into generative organs of linseed (Linum usitatissimum L.). Z Pflanzenernahr Bodenk 160:505–510CrossRefGoogle Scholar
  13. Belopuhov S, Korsun N, Fokin A, Fokin E (2001) The influence of plant growth regulators on quality of fibre flax and content of heavy metals in yield. Nat Fibres (Spl 1st edn.): 238–241Google Scholar
  14. Bjelková M (2011) The use of fiber plants in phytoremediation. Ph.D. Thesis, Mendel University, BrnoGoogle Scholar
  15. Bjelkova M, Tejklova E, Griga M, Gencurova V (2001) Uptake and accumulation of cadmium and lead by flax and hemp. In: Proceedings of 1st European bioremediation conference, Chania, GreeceGoogle Scholar
  16. Bjelková M, Griga M, Zajíčková I (2005) The effect of increased cadmium and lead soil concentrations on the growth and heavy metal accumulations by hemp (Cannabis sativa L.) plants. In: Schwitzguébel JP, Barbafieri M, Tassi E (eds) COCT 859. Phytotechnologies to promotore sustainable land use and improve food safety. CNR Research Campus, PisaGoogle Scholar
  17. Bjelková M, Blažek O, Griga M (2007) Vliv těžkých kovů na dynamiku klíčení semen lnu. In: Bláha L (ed) Vliv biotických a abiotických stresorů na vlastnosti rostlin. VÚRV, Praha, pp 566–572 (In Czech)Google Scholar
  18. Bjelková M, Genčurová V, Griga M (2011a) Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils. Ind Crops Prod 33:761–774CrossRefGoogle Scholar
  19. Bjelková M, Větrovcová M, Griga M, Škarpa P (2011b) Effect of sewage sludge in soil on Cd, Pb and Zn accumulation in the Linum usitatissimum L. Ecol Chem Eng 18:265–274Google Scholar
  20. Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP. Compos Sci Technol 70: 1687–1696CrossRefGoogle Scholar
  21. Böhm H, Marquard R (1993a) Untersuchungen zur Cadmiumaufnahme von Lein bei verschiedenen Bodenarten, pH-Werten und Cd-Belastungen des Bodens. VDLUFA—Schriftenreihe 37: 505–508Google Scholar
  22. Böhm H, Marquard R (1993b) Untersuchungen zur Cadmiumaufnahme von Lein-Genotypen im Hinblick auf die Produktion von “Diätlein”. Vortr Züchtungsforsch 26:26–29Google Scholar
  23. Böhm H, Gaudchau M, Marquard R (1992) Cadmiumaufnahme von Sachalinknöterich (Polygonum sachalinense F. Schmidt) in Vergleich zu Lein (Linum usitatissimum L.). Mitteil Gesell Pflanzenbauwiss 5:239–242Google Scholar
  24. Borkowska H, Jackowska I, Piotrowski B, Styk B (2001) Suitability of cultivation some perennial species on sewage sludge. Polish J Environ Stud 10:379–381Google Scholar
  25. Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27CrossRefGoogle Scholar
  26. Brouwer WD (2000) Natural fibre composites: where can flax compete with glass? SAMPE J 36: 18–23Google Scholar
  27. Cappelletto P, Mongardini F, Sanniballe M, Brizzi M, Pasini P (1998) Mechanical treatment of field retted oilseeds flax and hemp: resulting fibres can restore recycled fibres quality. In: The 1st Nordic conference on flax and processing, Tampere, pp 127–131Google Scholar
  28. Chakravarty B, Srivastava S (1997a) Effect of cadmium and zinc interaction on metal uptake and regeneration of tolerant plants in linseed. Agric Ecosyst Environ 61:45–50CrossRefGoogle Scholar
  29. Chakravarty B, Srivastava S (1997b) Effects of genotype and explant during in vitro response to cadmium stress and variation in protein and proline contents in linseed. Ann Bot 79:487–491Google Scholar
  30. Cieslinski G, Van Rees KCJ, Huang PM, Kozak LM, Rostad HPW, Knott DR (1996) Cadmium uptake and bioaccumulation in selected cultivars of durum wheat and flax as affected by soil type. Plant Soil 182:115–124CrossRefGoogle Scholar
  31. Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252CrossRefGoogle Scholar
  32. Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G (2005) The arbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. Chemosphere 59:21–29PubMedCrossRefGoogle Scholar
  33. Clarke RC (1999) Botany of the genus Cannabis. In: Ranalli P (ed) Advances in hemp research. Food Products Press, Binghamton, NYGoogle Scholar
  34. Codex Alimentarius Commission (1993) Risk assessment procedures used by the CAC, and its subsidiary and advisory bodies. In: Joint FAO/WHO Food Standards Programme, XXth Session, FAO/WHO, RomeGoogle Scholar
  35. Diederichsen A, Hammer K (1995) Variation of cultivated flax (Linum usitatissimum L. subsp. usitatissimum) and its wild progenitor pale flax (subsp. angustifolium (Huds.) Thell.). Genet Resour Crop Evol 42:262–272Google Scholar
  36. Dir94-10 The Biology of Linum usitatissimum L. (Flax), and the guidelines Dir95-03 Guidelines for the assessment of livestock feed from plants with novel traits. The biology of Linum usitatissimum L. (Flax). Biology Document BIO1994-10: A companion document to the Directive 94–08 (Dir94-08), Assessment criteria for determining environmental safety of plant with novel traitsGoogle Scholar
  37. Domier KW (1996) Utilization of flax straw for insulation and concrete form panels. Euroflax Newslett 5:15–18Google Scholar
  38. Eboh LO, Thomas BE (2005) Analysis of heavy metal content in Cannabis leaf and seed cultivated in southern part of Nigeria. Pak J Nutr 4:349–351CrossRefGoogle Scholar
  39. Faeti V, Mandolino G, Ranalli P (1996) Genetic diversity of Cannabis sativa germplasm based on RAPD markers. Plant Breed 115:367–370CrossRefGoogle Scholar
  40. Fojta M, Fojtova M, Havran L, Pivoňkova H, Dorčák V, Šestáková I (2006) I. Electrochemical monitoring of phytochelatin accumulation in Nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium. Anal Chim Acta 558:171–178CrossRefGoogle Scholar
  41. Fu YB (2005) Geographic patterns of RAPD variation in cultivated flax. Crop Sci 45:1084–1091CrossRefGoogle Scholar
  42. Gambus H, Mikulec A, Gambus F, Pisulewski P (2004) Perspectives of linseed utilization in baking. Pol J Food Nutr Sci 13(54):21–27Google Scholar
  43. Gaudchau M, Marquard R (1990) Untersuchungen zum cadmium-Gehalt von zwei Leinsorten in Abhängigkeit von der Bodenkontamination. VDLUFA—Schriftenreihe 32:867–873Google Scholar
  44. Gaudchau M, Schneider M (1996) Investigation of heavy metal accumulation in various medicinal plants and linseed. Beitr Züchtungsforsch 2:381–384Google Scholar
  45. Gill KS (1987) Linseed. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  46. Gilmore S, Peakall R (2003) Isolation of microsatellite markers in Cannabis sativa L. (marijuana). Mol Ecol Notes 3:105–107CrossRefGoogle Scholar
  47. Gorlach E (1994) Phytoavailability of heavy metals as affected by liming and plant species. Pol J Soil Sci XXVII:59–67Google Scholar
  48. Gorlach E, Gambuś F (1992) A comparison of sensitivity to the toxic action of heavy metals in various plant species. Pol J Soil Sci XXV:207–213Google Scholar
  49. Grabowska L, Baraniecki P (1997) Three year results on utilization of soil polluted by copper-producing industry. Nat Fibres (Spl edn.): 123–132Google Scholar
  50. Grant CA, Bailey LD (1997) Effects of phosphorus and zinc fertilizer management on cadmium accumulation in flaxseed. J Sci Food Agric 73:307–314CrossRefGoogle Scholar
  51. Grant CA, Buckley WT, Bailey LD, Selles F (1998) Cadmium accumulation in crops. Can J Plant Sci 78:1–17CrossRefGoogle Scholar
  52. Grant CA, Dribnenki JCP, Bailey LD (2000) Cadmium and zinc concentrations and ratios in seed and tissue of solin (cv. Linola™ 947) and flax (cvs. McGregor and Vimy) as affected by nitrogen and phosphorus fertiliser and provide (Penicillium bilaji). J Sci Food Agric 80: 1735–1743CrossRefGoogle Scholar
  53. Grant CA, Monreal MA, Irvine RB, Mohr RM, McLaren DL, Khakbazan M (2010) Preceding crop and phosphorus fertilization affect cadmium and zinc concentration of flaxseed under conventional and reduced tillage. Plant Soil 333:337–350CrossRefGoogle Scholar
  54. Griga M, Bjelková M, Tejklová E (2003a) Potential of flax (Linum usitatissimum L.) for heavy metal phytoextraction and industrial processing of contaminated biomass – a review. In: Mench MJ, Mocquot B (eds) Risk assessment and sustainable land management using plants in trace element-contaminated soils. Centre INRA Bordeaux - Aquitaine, Villenave d’Ornon, France, pp 174–180Google Scholar
  55. Griga M, Bjelková M, Tejklová E (2003b) Phytoextraction of heavy metals by fibre crops: Linum usitatissimum L. case study. In: Proceedings of 2nd European bioremediation conference, Chania, Crete, pp 337–340Google Scholar
  56. Grzebisz W, Chudzinski B, Diatta JB, Barlog P (1997a) Phytoremediation of soils contaminated by copper smelter activity. Part I – Evaluation of soils contaminated by heavy metals. Nat Fibres (Spl edn.): 111–117Google Scholar
  57. Grzebisz W, Chudzinski B, Diatta JB, Barlog P (1997b) Phytoremediation of soils contaminated by copper smelter activity. Part II – Usefulness of non-consumable crops. Nat Fibres (Spl edn.): 118–122Google Scholar
  58. Helal HM, Rietz E, Sauerbeck D (1991) Aufnahme und Verlagerung von Schwermetallen in Leinpflanzen. VDLUFA—Schriftenreihe 33:757–760Google Scholar
  59. Heyn J, Janssen E (1991) Ergebnisse eines Gefässversuches zur Reduzierung des Cd-Gehaltes in Öllein (Linum usitatissimum). VDLUFA—Schriftenreihe 33:761–766Google Scholar
  60. Hillig KW (2005) Genetic evidence for speciation in cannabis (Cannabaceae). Genet Res Crop Evol 52:161–180CrossRefGoogle Scholar
  61. Hocking PJ, McLaughlin MJ (2000) Genotypic variation in cadmium accumulation by seed of linseed, and comparison with seeds of some other crop species. Aust J Agric Res 51:427–433CrossRefGoogle Scholar
  62. Hocking PJ, Randall PJ, Pinkerton A (1988) Mineral nutrition of linseed and flax. Adv Agron 4:221–296Google Scholar
  63. Hradilová J, Řehulka P, Řehulková H, Vrbová M, Griga M, Brzobohatý B (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31:421–431PubMedCrossRefGoogle Scholar
  64. International Gemeinschaft für Forschung und Prüfung auf dem Gebiet der Textilökologie (2005) Öko Tex Standards 100, 200, 1000. Öko Tex Gemeinschaft, ZürichGoogle Scholar
  65. Jankauskiene Z (1998) Effect of heavy metals content on fiber flax yield. Hemp, flax and other bast fibrous plants. In: Production, Technology and Ecology Symposium Poznan, Poland, pp 105–107Google Scholar
  66. Jasiewicz C (1991) Copper effect on the Mn, Zn and Fe uptake by plants. Part II. Investigations in water cultures. Roczniki Gleboznawcze T. XLII, NR 1/2, Warszawa, pp 79–88Google Scholar
  67. Jiao Y, Grant CA, Bailey LD (2004) Effects of phosphorus and zinc fertilizer on cadmium uptake and distribution in flax and durum wheat. J Sci Food Agric 84:777–785CrossRefGoogle Scholar
  68. Jurkowska H, Wiśniowska-Kielian B, Rogoż A, Wojciechowicz T (1990) The effect of nitrogen fertilization rate on the content of mineral components in plants. Part II. Microelements. Zeszyty Naukowe Akademii Rolniczej w Krakowie 29:51–64Google Scholar
  69. Jurkowska H, Rogoś A, Wojciechowicz T (1992) Content of mineral components in plants with relation to soil moisture. Part I. Macroelements (in Polish). Acta Agraria et Silvestria, Series Agraria 30:29–35Google Scholar
  70. Karus M, Vogt D (2004) European hemp industry: cultivation, processing and product lines. Euphytica 140:7–12CrossRefGoogle Scholar
  71. Klein H, Weigert P (1987) Schwermetalle in Leinsamen. Bundesgesundhbl 30:391–395Google Scholar
  72. Kojoma M, Iida O, Makino Y, Sekita S, Satake M (2002) DNA fingerprinting of Cannabis sativa using inter-simple sequence repeat (ISSR) amplification. Planta Med 68:60–63PubMedCrossRefGoogle Scholar
  73. Kokurin NL, Yagodin BA (1997) Elemental composition of flax and its wild relatives as affected by genetic and environmental factors. Nat Fibres (Spl edn.): 101–104Google Scholar
  74. Kolodziejczyk P, Kozlowska J (1993) Linseed in health food and nutrition. In: Proceedings of III European regional workshop on flax, Bonn, Germany, pp 61–67Google Scholar
  75. Kolodziejczyk PP, Kozlowska J (1996) Recent progress in linseed utilization in health food and human nutrition. In: European regional workshop on flax, Rouen, France, pp 325–340Google Scholar
  76. Korkmaz K, Kara SM, Ozkutlu F, Gul V (2010) Monitoring of heavy metals and selected micronutrients in hempseeds from North-western Turkey. Afr J Agric Res 5:463–467Google Scholar
  77. Kos B, Leštan D (2004) Soil washing of Pb, Zn and Cd using biodegradable chelator and permeable barriers and induced phytoextraction by Cannabis sativa. Plant Soil 263:43–51CrossRefGoogle Scholar
  78. Kos B, Grčman H, Leštan D (2003) Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil Environ 49:548–553Google Scholar
  79. Kozlowski R, Grabowska L, Baraniecki P (1993) The utilization of areas polluted by industry by cultivation of annual fibrous plants. Wielkopolska Fundacja Naukowa T. Perkitnego. Las – Drewno – Ekologia, pp 119–124Google Scholar
  80. Kozlowski R, Grabowska L, Baraniecki P, Mscicz J (1993/1994) Recultivation by flax and hemp culture of soil polluted by heavy metals. Nat Fibres (Spl edn.): 159–164Google Scholar
  81. Kozlowski R, Baraniecki P, Grabowska L, Mańkowski J (2002) Bast fibrous plants, rapes and reed canary grass for phytoremediation of areas polluted with heavy metals. In: Ecology and eco-technologies conference, ViennaGoogle Scholar
  82. Kwiatkowska MW, Czemplik M, Kulma A, Żuk M, Kaczmar J, Dymińska L, Hanuza J, Maciej Ptak M, Szopa J (2012) New biocomposites based on bioplastic flax fibers and biodegradable polymers. Biotechnol Prog. doi: 10.1002/btpr.1599
  83. Labuda S, Kaczor A (1999) Microelements in test plants as affected by irrigation with sewage water of muck-peat soil. Folia Universitatis Agriculturae Stetinensis, Agricultura 77:225–230Google Scholar
  84. Li YM, Chaney RL, Schneiter AA, Miller JF, Elias EM, Hammond JJ (1997) Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax. Euphytica 94:23–30CrossRefGoogle Scholar
  85. Lingaraju D, Rao SCH, Prasad VJJ, Rama Raju AVS (2012) Fuelling diesel engine with diesel, linseed derived biodiesel and its blends at different injection pressures: performance studies. IJMIE 2:7CrossRefGoogle Scholar
  86. Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16:33–42CrossRefGoogle Scholar
  87. Linger P, Ostwald A, Haensler J (2005) Cannabis sativa L. growing on heavy metal contaminated soil: growth, cadmium uptake and photosynthesis. Biol Plant 49:567–576CrossRefGoogle Scholar
  88. Löser C, Zehnsdorf A, Fussy M, Stärk HJ (2002) Conditioning of heavy metal-polluted river sediment by Cannabis sativa L. Int J Phytoremediation 4:27–45CrossRefGoogle Scholar
  89. Lukipudis S (2001) Selectivity of some sorts of flax and common contamination of flax fibers by heavy metals. Proceedings of 2nd global workshop bast plants in the new millenium, Borovets, Bulgaria. Nat Fibres Spl Edn.:215–218Google Scholar
  90. Mandolino G, Ranalli P (2002) The applications of molecular markers in genetics and breeding of hemp. J Ind Hemp 7:7–23CrossRefGoogle Scholar
  91. Mankowski J, Grabowska L, Baraniecki P (1994) Hemp and flax cultivated on the soil polluted with heavy metals – A biological purification of the soil and a raw material for the pulp industry. In: Symposium on alternative oilseed and fibre crops for cool and wet regions of Europe, Wageningen, pp 50–59Google Scholar
  92. Marquard R, Böhm H (1992) Cadmiumgehalte von Lein (Linum usitatissimum) und Sonnenblumen (Helianthus annuus) in Abhängigkeit von Genotyp und Standort. In: Mengen und Spurenelemente – Proceding 12 Arbeitstagung, Jena, GermanyGoogle Scholar
  93. Marquard R, Böhm H, Friedt W (1990) Untersuchungen über Cadmiumgehalte in Leinsaat (Linum usitatissimum L.). Fat Sci Technol 12:468–472Google Scholar
  94. McDill JR (2009) Molecular phylogenetic studies in the Linaceae and Linum, with implications for their systematics and historical biogeography. The University of Texas, Austin.
  95. Mojžíš B (1988) Flax, its history, cultivation, processing and use. SNTL, Praha, 736p (In Czech)Google Scholar
  96. Moraghan JT (1993) Accumulation of cadmium and selected elements in flax seed grown on a calcareous soil. Plant Soil 150:61–68CrossRefGoogle Scholar
  97. Muir AD, Wescott ND (2001) Flax: The genus Linum. Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, CanadaGoogle Scholar
  98. Mullins GL, Burmester CH (1993) Accumulation of copper, iron, manganese and zinc by four cotton cultivars. Field Crop Res 32:129–140CrossRefGoogle Scholar
  99. Muravenko OV, Lemesh VA, Samatadze TE, Amosova AV, Grushetskaya ZE, Popov KV, Semenova OY, Khotyuleva LV, Zelenin AV (2003) Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russ J Genet 39:414–421CrossRefGoogle Scholar
  100. Murphy DPL, Behring H, Wieland H (1997) The use of flax and hemp materials for insulating. In: Proceedings of flax and other bast plants symposium, Poznan, Poland, pp 79–84Google Scholar
  101. Najmanova J, Neumannova E, Leonhardt T, Zitka O, Kizek R, Macek T, Mackova M, Kotrba P (2012) Cadmium-induced production of phytochelatins and speciation of intracellular cadmium in organs of Linum usitatissimum seedlings. Ind Crops Prod 36:36–542CrossRefGoogle Scholar
  102. Pavelek M, Tejklová E, Bjelková M (2011) Results of linseed breeding in the Czech Republic: Tagungsband der 61. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, Raumberg-Gumpenstein, Österreich. Ertrag vs. Qualität bei Getreide, Öl und Eiweisspflanzen 127–129Google Scholar
  103. Penner GA, Clarke J, Bezte LJ, Liesle D (1995) Identification of RAPD markers linked to a gene governing cadmium uptake in durum wheat. Genome 38:543–547PubMedCrossRefGoogle Scholar
  104. Piotrowska-Cyplik A, Czarnecki Z (2003a) Phytoextraction of heavy metals by hemp during anaerobic sewage sludge management in the non-industrial sites. Pol J Environ Stud 12: 779–784Google Scholar
  105. Piotrowska-Cyplik A, Czarnecki Z (2003b) Phytoextraction of Pb, Cr and Cd by hemp during sugar industry anaerobic sewage sludge treatment. Electron J Pol Agric Univ 8:1–8Google Scholar
  106. Piotrowska-Cyplik A, Czarnecki Z (2005) Phytoextraction of Pb, Cr and Cd by hemp during sugar industry anaerobic sewage sludge treatment. Electron J Pol Agric Univ 8:3.
  107. Ranalli P (1999) Advances in hemp research. Food Products Press, New YorkGoogle Scholar
  108. Ranalli P, Venturi G (2004) Hemp as a raw material for industrial applications. Euphytica 140:1–6CrossRefGoogle Scholar
  109. Schneider M, Marquard R (1996) Aufnahme und akkumulation von cadmium und weitere schwermetalle bei Hypericum perforatum L. und Linum usitatissimum L. Zeitsch Arznei Gewurzpflanz 1:111–116Google Scholar
  110. Schneider M, Marquard R, Kuhlmann H (1996) Cadmium accumulation of Fagopyrum esculentum and Linum usitatissimum grown on different soils in pot and field areas. Beitr Züchtungsforsch 2:385–388Google Scholar
  111. Scholz V, Ellebrock R (2002) The growth productivity, and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenergy 23:81–92CrossRefGoogle Scholar
  112. Schubert S (1992) Untersuchungen zur Aufnahme und Verlagerung von cadmium in Diätlein (Linum usitatissimum L.). VDLUFA—Schriftenreihe 35:527–530Google Scholar
  113. Schultes RE, Klein WM, Plowman T, Lockwood TE (1974) Cannabis: an example of taxonomic neglect. Bot Mus leaf Harv Univ 23:337–367Google Scholar
  114. Singh KK, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: a potential source of food, feed and fiber. Crit Rev Food Sci Nutr 51:210–222PubMedCrossRefGoogle Scholar
  115. Small E, Cronquist A (1976) A practical and natural taxonomy for Cannabis. Taxon 25:405–435CrossRefGoogle Scholar
  116. Smýkalová I, Vrbová M, Tejklová E, Větrovcová M, Griga M (2010) Large scale screening of heavy metal tolerance in flax/linseed (Linum usitatissimum L.) tested in vitro. Ind Crops Prod 32:527–533CrossRefGoogle Scholar
  117. Soudek P, Katrušáková A, Sedláček L, Petrová Š, Kočí V, Maršík P, Griga M, Vaněk T (2010) Effect of heavy metals on seed germination in twenty three cultivars of flax (Linum usitatissimum L.). Arch Environ Contam Toxicol 59:194–203PubMedCrossRefGoogle Scholar
  118. Štaud J, Bjelková M (1997) The application of the linseed stem for energy and technical purposes. Nat Fibres (Spl edn.): 145–146Google Scholar
  119. Štaud J, Vašák J et al (1997) Fundamentals of flax and linseed cultivation. Institute of Education and Training of the Ministry of Agriculture, Prague (In Czech)Google Scholar
  120. Straczynski S, Andruszczak E (1996) Effect of soil Cu and Pb pollution degree on trace elements content in chosen species of field crops. Zeszyty Probl Postep Nauk Rolnicz 434:901–908Google Scholar
  121. Szynkowska MI, Rybicki E, Lešniewska E, Pawlaczyk A, Paryjczak T, Matyjas-Zgondek E (2009) Influence of production progress on the heavy metal content in flax fibers. Chem Pap 63: 537–542CrossRefGoogle Scholar
  122. Tejklová E, Blažek O, Smýkalová I, Vrbová M, Větrovcová M, Griga M (2007) In vitro screening of Linum usitatissimum L. varieties for Cd-tolerance and Cd-accumulation. In: COST 859 WG1 and WG3 Workshop – Nutrient biofortification and exclusion of pollutants in food plants, Sede Boqer, Israel, 31pGoogle Scholar
  123. Tlustoš P, Száková J, Hrubý J, Hartman I, Najmanová NJ, Pavlíková D, Batysta M (2006) Removal of As, Cd, Pb a Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423Google Scholar
  124. Uysal H, Fu YB, Kurt O, Peterson GW, Diederichsen A, Kusters P (2010) Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne L.) as revealed by ISSR markers. Genet Res Crop Evol 57:1109–1119CrossRefGoogle Scholar
  125. Vavilov NI (1926) Studies on the origin of cultivated plants. Bull Appl Bot Plant Breed 14:1–245 (In Russian)Google Scholar
  126. Vrbová M, Fojta M, Havran L, Fojtová M, Griga M (2009) Phytochelatin induction in Cd-treated cell suspension cultures of flax. In: Abstracts of COST 859 Workshop–uptake, sequestration and detoxification–an integrated approach, Szeged, Hungary, 49pGoogle Scholar
  127. Vrbová M, Kotrba P, Horáček J, Smýkal P, Švábová L, Větrovcová M, Smýkalová I, Griga M (2012) Enhanced accumulation of cadmium in Linum usitatissimum L. plants due to overproduction of metallothionein α-domain as a fusion to β-glucuronidase protein. Plant Cell Tiss Org Cult. doi: 10.1007/s11240-012-0239-1
  128. Wedler M, Kohler R (1993/1994) Non-textile use of flax. Nat Fibres (Spl edn):53–56Google Scholar
  129. WHO (1972) Evaluation of certain food additives and of the contaminants mercury, lead and cadmium. FAO Nutrition Meetings Report Series No. 51, WHO Technical Report Series 505. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  130. Wislicki B, Zrodowska B, Krzyzanowski R (1997) Esters of aliphatic alcohols and fatty acids present in vegetable oils obtained from plants grown on heavy metal polluted areas as diesel fuels and lubricatine oils. Nat Fibres (Spl edn.): 105–110Google Scholar
  131. Wisniewski J, Kolodziej B (1999) The effect of purified municipal sewage water application on the yield and chemical content of hemp. Zeszyty Naukowe Akademii Rolniczej 77:379–386Google Scholar
  132. Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Clarendon, OxfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Plant Biotechnology DepartmentAGRITEC Plant Research Ltd.ŠumperkCzech Republic
  2. 2.Department of Industrial CropsAGRITEC Plant Research Ltd.ŠumperkCzech Republic

Personalised recommendations