Advertisement

Improving Performance via Population Growth and Local Search: The Case of the Artificial Bee Colony Algorithm

  • Doğan Aydın
  • Tianjun Liao
  • Marco A. Montes de Oca
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7401)

Abstract

We modify an artificial bee colony algorithm as follows: we make the population size grow over time and apply local search on strategically selected solutions. The modified algorithm obtains very good results on a set of large-scale continuous optimization benchmark problems. This is not the first time we see that the two aforementioned modifications make an initially non-competitive algorithm obtain state-of-the-art results. In previous work, we have shown that the same modifications substantially improve the performance of particle swarm optimization and ant colony optimization algorithms. Altogether, these results suggest that population growth coupled with local search help obtain high-quality results.

Keywords

Local Search Local Search Algorithm Benchmark Function Continuous Optimization Local Search Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conference of Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. European Journal of Operational Research 185, 1155–1173 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Montes de Oca, M.A., Stützle, T., Van den Enden, K., Dorigo, M.: Incremental social learning in particle swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(2), 368–384 (2011)CrossRefGoogle Scholar
  4. 4.
    Montes de Oca, M.A., Aydın, D., Stützle, T.: An incremental particle swarm for large-scale optimization problems: An example of tuning-in-the-loop (re)design of optimization algorithms. Soft Computing 15(11), 2233–2255 (2011)CrossRefGoogle Scholar
  5. 5.
    Liao, T., Montes de Oca, M.A., Aydın, D., Stützle, T., Dorigo, M.: An Incremental Ant Colony Algorithm with Local Search for Continuous Optimization. In: GECCO 2011, pp. 125–132. ACM Press, New York (2011)Google Scholar
  6. 6.
    Lozano, M., Molina, D., Herrera, F.: Editorial: Scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems. Soft Computing 15(11), 2085–2087 (2011)CrossRefGoogle Scholar
  7. 7.
    Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes Universitesi, Computer Engineering Department (2005)Google Scholar
  8. 8.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of Global Optimization 39(3), 459–471 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Eiben, A.E., Marchiori, E., Valkó, V.A.: Evolutionary Algorithms with On-the-Fly Population Size Adjustment. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 41–50. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Chen, D., Zhao, C.: Particle swarm optimization with adaptive population size and its application. Applied Soft Computing 9(1), 39–48 (2009)CrossRefGoogle Scholar
  11. 11.
    Hsieh, S., Sun, T., Liu, C., Tsai, S.: Efficient population utilization strategy for particle swarm optimizer. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39(2), 444–456 (2009)CrossRefGoogle Scholar
  12. 12.
    Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: CEC 2005, pp. 1769–1776. IEEE Press (2005)Google Scholar
  13. 13.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race: An overview. In: Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Eshelman, L., Schaffer, J.: Real-coded genetic algorithms and interval-schemata. Foundations of Genetic Algorithms 2, 187–202 (1993)Google Scholar
  17. 17.
    Suganthan, P., Hansen, N., Liang, J., Deb, K., Chen, Y., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical Report 2005005, Nanyang Technological University (2005)Google Scholar
  18. 18.
    Karaboga, D., Akay, B.: A comparative study of Artificial Bee Colony algorithm. Applied Mathematics and Computation 214(1), 108–132 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Powell, M.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. The Computer Journal 7(2), 155–162 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Tseng, L., Chen, C.: Multiple trajectory search for large scale global optimization. In: CEC 2008, pp. 3052–3059. IEEE Press, Piscataway (2008)Google Scholar
  21. 21.
    Herrara, F., Lozano, M., Molina, D.: Test suite for the special issue of soft computing on scalability of evolutionary algorithms and other metaheuristics for large scale continuous optimization problems (2010), http://sci2s.ugr.es/eamhco/updated-functions1-19.pdf
  22. 22.
    Diwold, K., Aderhold, A., Scheidler, A., Middendorf, M.: Performance evaluation of artificial bee colony optimization and new selection schemes. Memetic Computing 3(3), 149–162 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Doğan Aydın
    • 1
  • Tianjun Liao
    • 2
  • Marco A. Montes de Oca
    • 3
  • Thomas Stützle
    • 2
  1. 1.Dept. of Computer EngineeringDumlupınar UniversityKütahyaTurkey
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Dept. of Mathematical SciencesUniversity of DelawareNewarkUSA

Personalised recommendations