Self-assembly Models of Variable Resolution

  • Andrzej Mizera
  • Eugen Czeizler
  • Ion Petre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7625)

Abstract

Model refinement is an important aspect of the model-building process. It can be described as a procedure which, starting from an abstract model of a system, performs a number of refinement steps in result of which a more detailed model is obtained. At the same time, in order to be correct, the refinement mechanism has to be capable of preserving already proven systemic quantitative properties of the original model, e.g. model fit, stochastic semantics, etc. In this study we concentrate on the refinement in the case of self-assembly models. Self-assembly is a process in which a disordered ensemble of basic components forms an organized structure as a result of specific, local interactions among these components, without external guidance. We develop a generic formal model for this process and introduce a notion of model resolution capturing the maximum size up to which objects can be distinguished individually in the model. All bigger objects are treated homogenously in the model. We show how this self-assembly model can be systematically refined in such a way that its resolution can be increased and decreased while preserving the original model fit to experimental data, without the need for tedious, computationally expensive process of parameter refitting. We demonstrate how the introduced methodology can be applied to a previously published model: we consider the case-study of in vitro self-assembly of intermediate filaments.

Keywords

Original Model Assembly Model Kinetic Rate Constant Variable Resolution External Guidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Essential Cell Biology, 2nd edn. Garland Science, New York (2004)Google Scholar
  2. 2.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)Google Scholar
  3. 3.
    Back, R.-J., von Wright, J.: Refinement Calculus. Springer (1998)Google Scholar
  4. 4.
    Bruggeman, F.J., Westerhoff, H.V.: The nature of systems biology. Trends in Microbiology 15(1), 45–50 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, W.W., Schoeberl, B., Jasper, P.J., Niepel, M., Nielsen, U.B., Lauffenburger, D.A., Sorger, P.K.: Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Molecular Systems Biology 5(239) (2009)Google Scholar
  6. 6.
    Czeizler, E., Mizera, A., Czeizler, E., Back, R.-J., Eriksson, J.E., Petre, I.: Quantitative analysis of the self-assembly strategies of intermediate filaments from tetrameric vimentin (2010) (manuscipt)Google Scholar
  7. 7.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling, Symmetries, Refinements. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 103–122. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Vries, G.d., Hillen, T., Lewis, M., Müller, J., Schönfisch, B.: A Course in Mathematical Biology: Quantitative Modelling with Mathematical and Computational Methods. Monographs on Mathematical Modeling and Computation. SIAM (2006)Google Scholar
  9. 9.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  11. 11.
    Henrikson, R.C., Kaye, G.I., Mazurkiewicz, J.E.: NMS Histology. National Medical Series for Independent Study. Lippincott Williams & Wilkins (1997)Google Scholar
  12. 12.
    Herrmann, H., Häner, M., Brettel, M., Ku, N.-O., Aebi, U.: Characterization of distinct early assembly units of different intermediate filament proteins. Journal of Molecular Biology 286(5), 1403–1420 (1999)CrossRefGoogle Scholar
  13. 13.
    Herrmann, H., Häner, M., Brettel, M., Müller, S.A., Goldie, K.N., Fedtke, B., Lustig, A., Franke, W.W., Aebi, U.: Structure and assembly properties of the intermediate filament protein vimentin: the role of its head, rod and tail domains. Journal of Molecular Biology 264(5), 933–953 (1996)CrossRefGoogle Scholar
  14. 14.
    Iverson, K.E.: A Programming Language, 4th edn. Wiley, New York (1962)MATHGoogle Scholar
  15. 15.
    Kirmse, R., Portet, S., Mücke, N., Aebi, U., Herrmann, H., Langowski, J.: A quantitative kinetic model for the in vitro assembly of intermediate filaments from tetrameric vimentin. Journal of Biological Chemistry 282(52), 18563–18572 (2007)CrossRefGoogle Scholar
  16. 16.
    Kitano, H.: Systems biology: A brief overview. Science 295(5560), 1662–1664 (2002)CrossRefGoogle Scholar
  17. 17.
    Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice. Wiley-VCH (2006)Google Scholar
  18. 18.
    Knuth, D.: Two notes on notation. American Mathematical Monthly 99(5), 403–422 (1992)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Lander, A.D.: The edges of understanding. BMC Biology 8, 40 (2010)CrossRefGoogle Scholar
  20. 20.
    Lok, L., Brent, R.: Automatic generation of cellular reaction networks with moleculizer 1.0. Nat. Biotechnol. 23, 131–136 (2005)CrossRefGoogle Scholar
  21. 21.
    Murphy, E., Danos, V., Feret, J., Krivine, J., Harmer, R.: Rule-based modeling and model refinement. In: Lodhi, H.M., Muggleton, S.H. (eds.) Elements of Computational Systems Biology. John Wiley & Sons, Inc., Hoboken (2010)Google Scholar
  22. 22.
    Raman, K., Chandra, N.: Systems biology. Resonance 15(2), 131–153 (2010)CrossRefGoogle Scholar
  23. 23.
    Scherlis, W.L., Scott, D.S.: First steps towards inferential programming. In: Mason, R.E.A. (ed.) Information Processing 83: Proceedings of the IFIP 9th World Computer Congress (1983)Google Scholar
  24. 24.
    Wirth, N.: Program development by stepwise refinement. Communications of the ACM 14(4), 221–227 (1971)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrzej Mizera
    • 1
  • Eugen Czeizler
    • 2
  • Ion Petre
    • 1
  1. 1.Department of Information TechnologiesÅbo Akademi UniversityFinland
  2. 2.Department of Information and Computer ScienceAalto UniversityFinland

Personalised recommendations