Minimal Reaction Systems

  • Andrzej Ehrenfeucht
  • Jetty Kleijn
  • Maciej Koutny
  • Grzegorz Rozenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7625)

Abstract

Reaction systems are a formal model for processes inspired by the functioning of the living cell. These processes are determined by the iteration of the state transition functions of reaction systems, also called rs functions. In this paper we provide mathematical characterisations of rs functions implemented/defined by “minimal reaction systems”, ı.e., reaction systems with reactions using the minimal number of reactants, or the minimal number of inhibitors, or the minimal number of resources (ı.e., reactants and inhibitors together).

Keywords

natural computing functioning of the living cell reaction resources of reaction reaction system state transition function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Cocco, N., Marin, A., Simeoni, M.: Petri nets for modelling metabolic pathways: a survey. Natural Computing 9(4), 955–989 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A calculus of looping sequences for modelling microbiological systems. Fundam. Inform. 72(1-3), 21–35 (2006)MathSciNetMATHGoogle Scholar
  3. 3.
    Brijder, R., Ehrenfeucht, A., Main, M.G., Rozenberg, G.: A tour of reaction systems. Int. J. Found. Comput. Sci. 22(7), 1499–1517 (2011)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brijder, R., Ehrenfeucht, A., Rozenberg, G.: A note on causalities in reaction systems. ECEASST 30 (2010)Google Scholar
  5. 5.
    Brijder, R., Ehrenfeucht, A., Rozenberg, G.: Reaction Systems with Duration. In: Kelemen, J., Kelemenová, A. (eds.) Pǎun Fetschrift. LNCS, vol. 6610, pp. 191–202. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Ciocchetta, F., Hillston, J.: Bio-PEPA: A framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3084 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Desel, J., Reisig, W., Rozenberg, G. (eds.): Lectures on Concurrency and Petri Nets. LNCS, vol. 3098. Springer, Heidelberg (2004)MATHGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Qualitative and quantitative aspects of a model for processes inspired by the functioning of the living cell. In: Katz, E. (ed.) Biomolecular Computing: From Logic Systems to Smart Sensors and Actuators. Wiley-VCH Verlag GmbH & Co. KGaA (2012)Google Scholar
  9. 9.
    Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Combinatorics of life and death for reaction systems. Int. J. Found. Comput. Sci. 21(3), 345–356 (2010)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ehrenfeucht, A., Main, M.G., Rozenberg, G.: Functions defined by reaction systems. Int. J. Found. Comput. Sci. 22(1), 167–178 (2011)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems. Theor. Comput. Sci. 376(1-2), 3–16 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75(1-4), 263–280 (2007)MathSciNetMATHGoogle Scholar
  13. 13.
    Ehrenfeucht, A., Rozenberg, G.: Introducing time in reaction systems. Theor. Comput. Sci. 410(4-5), 310–322 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Heiner, M., Gilbert, D.: How Might Petri Nets Enhance Your Systems Biology Toolkit. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 17–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Hirvensalo, M.: On probabilistic and quantum reaction systems. Theor. Comput. Sci. 429, 134–143 (2012)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Prentice Hall (2006)Google Scholar
  18. 18.
    Kleijn, J., Koutny, M., Rozenberg, G.: Modelling reaction systems with Petri nets. In: BioPPN 2011, International Workshop on Biological Processes & Petri Nets. CEUR-WS Workshop Proceedings, vol. 724, pp. 36–52 (2011)Google Scholar
  19. 19.
    Lehninger, A.L.: Bioenergetics: The Molecular Basis of Biological Energy Transformations. W.A. Benjamin, Inc., New York (1965)Google Scholar
  20. 20.
    Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Salomaa, A.: On State Sequences Defined by Reaction Systems. In: Constable, R.L., Silva, A. (eds.) Kozen Festschrift. LNCS, vol. 7230, pp. 271–282. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Schlosser, G., Wagner, G.P. (eds.): Modularity in Development and Evolution. The University of Chicago Press, Chicago (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andrzej Ehrenfeucht
    • 1
  • Jetty Kleijn
    • 2
  • Maciej Koutny
    • 3
  • Grzegorz Rozenberg
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of Colorado at BoulderBoulderU.S.A
  2. 2.LIACSLeiden UniversityThe Netherlands
  3. 3.School of Computing ScienceNewcastle UniversityUK

Personalised recommendations