Advertisement

Abstract

A Bayesian prior over first-order theories is defined. It is shown that the prior can be approximated, and the relationship to previously studied priors is examined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boolos, G., Burgess, J.P., Jeffrey, R.C.: Computability and Logic. Cambridge University Press (2007)Google Scholar
  2. 2.
    Dinneen, M., Brewster, T., Faber, V.: A computational attack on the conjectures of graffiti: New counterexamples and proofs. Discrete Mathematics 147, 1–3 (1992)MathSciNetGoogle Scholar
  3. 3.
    Gaifman, H.: Reasoning with limited resources and assigning probabilities to arithmetical statements. Synthese 140(1951), 97–119 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lenat, D., Brown, J.: Why am and eurisko appear to work. Artificial Intelligence 23(3), 269–294 (1984)CrossRefGoogle Scholar
  5. 5.
    Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Graduate texts in computer science. Springer (1997)Google Scholar
  6. 6.
    Schmidhuber, J.: Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4), 587–612 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Weatherson, B.: From classical to intuitionistic probability. Notre Dame Journal of Formal Logic 44(2), 111–123 (2003)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abram Demski
    • 1
  1. 1.Institute for Creative TechnologiesPlaya VistaUSA

Personalised recommendations