Electing a Leader in Multi-hop Radio Networks

  • Bogdan S. Chlebus
  • Dariusz R. Kowalski
  • Andrzej Pelc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)

Abstract

We consider the task of electing a leader in a distributed manner in ad hoc multi-hop radio networks. Radio networks represent the class of wireless networks in which one frequency is used for transmissions, network’s topology can be represented by a simple undirected graph with some n nodes, and there is no collision detection. We give a randomized algorithm electing a leader in \(\mathcal{O}(n)\) expected time and prove that this time bound is optimal. We give a deterministic algorithm electing a leader in \(\mathcal{O}(n\log^{3/2}n \sqrt{\log\log n})\) time. By way of application, we show how to perform gossiping with combined messages in \(\mathcal{O}(n\log^{3/2} n \sqrt{\log\log n})\) time by a deterministic algorithm, and in \(\mathcal{O}(n)\) expected time by a randomized algorithm.

Keywords

radio network leader election distributed algorithm gossiping randomization lower bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Gafni, E.: Time and message bounds for election in synchronous and asynchronous complete networks. SIAM J. on Computing 20(2), 376–394 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics, 2nd edn. John Wiley (2004)Google Scholar
  3. 3.
    Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree, counting, leader election and related problems. In: Proceedings of the 19th ACM Symposium on Theory of Computing, STOC, pp. 230–240 (1987)Google Scholar
  4. 4.
    Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: An exponential gap between determinism and randomization. Journal of Computer and System Sciences 45(1), 104–126 (1992)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Censor-Hillel, K., Gilbert, S., Kuhn, F., Lynch, N.A., Newport, C.C.: Structuring unreliable radio networks. In: Proceedings of the 30th ACM Symposium on Principles of Distributed Computing, PODC, pp. 79–88 (2011)Google Scholar
  6. 6.
    Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient Distributed Communication in Ad-Hoc Radio Networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Chlebus, B.S., Kowalski, D.R., Radzik, T.: Many-to-many communication in radio networks. Algorithmica 54(1), 118–139 (2009)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theoretical Computer Sciences 302(1-3), 337–364 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown topology. Journal of Algorithms 60(2), 115–143 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    De Marco, G.: Distributed broadcast in unknown radio networks. SIAM Journal on Computing 39(6), 2162–2175 (2010)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Transactions on Programming Languages and Systems 5(1), 66–77 (1983)MATHCrossRefGoogle Scholar
  12. 12.
    Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for minimum-weight spanning trees. SIAM J. on Computing 27(1), 302–316 (1998)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gąsieniec, L.: On Efficient Gossiping in Radio Networks. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 2–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Gąsieniec, L., Pagourtzis, A., Potapov, I., Radzik, T.: Deterministic communication in radio networks with large labels. Algorithmica 47(1), 97–117 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Efficient algorithms for leader election in radio networks. In: Proceedings of the 21st ACM Symposium on Principles of Distributed Computing, PODC, pp. 51–57 (2002)Google Scholar
  16. 16.
    Kowalski, D.R., Pelc, A.: Broadcasting in undirected ad hoc radio networks. Distributed Computing 18(1), 43–57 (2005)CrossRefGoogle Scholar
  17. 17.
    Kowalski, D.R., Pelc, A.: Leader Election in Ad Hoc Radio Networks: A Keen Ear Helps. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 521–533. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Kuhn, F., Lynch, N.A., Newport, C.C., Oshman, R., Richa, A.W.: Broadcasting in unreliable radio networks. In: Proceedings of the 29th ACM Symposium on Principles of Distributed Computing, PODC, pp. 336–345 (2010)Google Scholar
  19. 19.
    Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC, pp. 513–522 (2010)Google Scholar
  20. 20.
    Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in radio networks. SIAM Journal on Computing 27(3), 702–712 (1998)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Martel, C.U.: Maximum finding on a multiple access broadcast network. Information Processing Letters 52(1), 7–15 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nakano, K., Olariu, S.: A survey on leader election protocols for radio networks. In: Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks, I-SPAN, pp. 63–68 (2002)Google Scholar
  23. 23.
    Newport, C.C., Lynch, N.A.: Modeling radio networks. Distributed Computing 24(2), 101–118 (2011)MATHCrossRefGoogle Scholar
  24. 24.
    Vaya, S.: Faster gossiping in bidirectional radio networks with large labels. CoRR abs/1105.0479 (2011)Google Scholar
  25. 25.
    Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM Journal on Computing 15(2), 468–477 (1986)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bogdan S. Chlebus
    • 1
  • Dariusz R. Kowalski
    • 2
  • Andrzej Pelc
    • 3
  1. 1.Department of Computer Science and EngineeringUniversity of Colorado DenverDenverUSA
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  3. 3.Département d’informatiqueUniversité du Québec en OutaouaisGatineauCanada

Personalised recommendations