Advertisement

Algorithms for Partial Gathering of Mobile Agents in Asynchronous Rings

  • Masahiro Shibata
  • Shinji Kawai
  • Fukuhito Ooshita
  • Hirotsugu Kakugawa
  • Toshimitsu Masuzawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7702)

Abstract

In this paper, we consider the partial gathering problem of mobile agents in asynchronous unidirectional rings equipped with whiteboards on nodes. The partial gathering problem requires, for a given input g, that each agent should move to a node and terminates so that at least g agents should meet at the same node. The requirement for the partial gathering is weaker than that for the ordinary (total) gathering, and thus, we have interests in clarifying the difference on the move complexity between them. We propose two algorithms to solve the partial gathering problem. One algorithm is deterministic and assumes unique ID of each agent. The other is randomized and assumes anonymous agents. The deterministic (resp., randomized) algorithm achieves the partial gathering in O(gn) (resp., expected O(gn + nlogk)) total number of moves where n is the ring size and k is the number of agents, while the total gathering requires Ω(kn) moves. We show that the move complexity of the deterministic algorithm is asymptotically optimal.

Keywords

distributed system mobile agent gathering problem partial gathering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kranakis, E., Krozanc, D., Markou, E.: The mobile agent rendezvous problem in the ring. Synthesis Lectures on Distributed Computing Theory (2010)Google Scholar
  2. 2.
    Gąsieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal Memory Rendezvous of Anonymous Mobile Agents in a Unidirectional Ring. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 282–292. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Kranakis, E., Santoro, N., Sawchuk, S.: Mobile agent rendezvous in a ring. In: Distributed Computing Systems (2003)Google Scholar
  4. 4.
    Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple Mobile Agent Rendezvous in a Ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Kranakis, E., Krizanc, D., Markou, E.: Mobile Agent Rendezvous in a Synchronous Torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 653–664. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.: Mobile Agents Rendezvous When Tokens Fail. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Dobrev, S., Flocchini, P., Prencipe, G., Nicola, N.: Mobile search for a black hole in an anonymous ring. Algorithmica 48, 67–90 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple Agents RendezVous in a Ring in Spite of a Black Hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Suzuki, T., Izumi, T., Ooshita, F., Kakugawa, H., Msuzawa, T.: Move-optimal gossiping among mobile agents. Theoretical Computer Science 393, 90–101 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of mobile agents: impact of sense of direction. Theory of Computing System 40, 143–162 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Randomized Rendezvous of Mobile Agents in Anonymous Unidirectional Ring Networks. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 303–314. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Peterson, G.L.: An O(nlogn) unidirectional algorithm for the circular extrema problem. TOPLAS 4, 758–762 (1982)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Masahiro Shibata
    • 1
  • Shinji Kawai
    • 1
  • Fukuhito Ooshita
    • 1
  • Hirotsugu Kakugawa
    • 1
  • Toshimitsu Masuzawa
    • 1
  1. 1.Graduate School of Information Science and TechnologyOsaka UniversityJapan

Personalised recommendations