3D Spinal Cord and Nerves Segmentation from STIR-MRI

  • Chih Yen
  • Hong-Ren Su
  • Shang-Hong Lai
  • Kai-Che Liu
  • Ruen-Rone Lee
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 21)

Abstract

In this paper, we present a system for spinal cord and nerves segmentation from STIR-MRI. We propose an user interactive segmentation method for 3D images, which is extended from the 2D random walker algorithm and implemented with a slice-section strategy. After obtaining the 3D segmentation result, we build the 3D spinal cord and nerves model for each view using VTK, which is an open-source, freely available software. Then we obtain the point cloud of the spinal cord and nerves surface by registering the three surface models constructed from three STIR-MRI images of different directions. In the experimental results, we show the 3D segmentation results of spinal cord and nerves from the STIR-MRI (Short Tau Inversion Recovery - Magnetic Resonance Imaging)images in three different views, and also display the reconstructed 3D surface model.

Keywords

STIR-MRI spinal cord segmentation random walker algorithm 3D point set registration 3D affine Fourier transform surface reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Grady, L.: Random walks for image segmentation. IEEE Trans. on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Heimann, T., Meinzer, H.P.: Statistical shape models for 3D medical image segmentation: A review. Medical Image Analysis 13(4), 543–563 (2009)CrossRefGoogle Scholar
  4. 4.
    Smyth, P.P., Taylor, C.J., Adams, J.E.: Automatic measurement of vertebral shape using active shape models. Image and Vision Computing, 705–714 (1996)Google Scholar
  5. 5.
    Brejl, M., Sonka, M.: Object localization and border detection criteria design in edge-based image segmentation: Automated learning from examples. IEEE Trans. Med. Imag., 973–985 (2000)Google Scholar
  6. 6.
    Carballido-Gamio, J., Belongie, S.J., Majumdar, S.: Normalized cuts in 3-D for spinal MRI segmentation. IEEE Trans. Med. Imag. 23(1), 36–44 (2004)CrossRefGoogle Scholar
  7. 7.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  8. 8.
    Huang, S.H., Chu, Y.H., Lai, S.H., Novak, C.L.: Learning-Based Vertebra Detection and Iterative Normalized-Cut Segmentation for Spinal MRI. IEEE Trans. Med. Imag. 28(10), 1595–1605 (2009)CrossRefGoogle Scholar
  9. 9.
    Cheng, Y.Y., Chang, H.M., Su, H.R., Lai, S.H., Liu, K.C., Lin, C.H.: 3D Liver Segmentation and Model Reconstruction from CT Images. iCBEB, 654–657 (2012)Google Scholar
  10. 10.
    Su, H.R., Lai, S.H.: CT-MR Image Registration in 3D K-Space Based on Fourier Moment Matching. PSIVT (2), 299–310 (2011)Google Scholar
  11. 11.
    Chen, Y.L., Lee, T.Y., Chen, B.Y., Lai, S.H.: Bipartite Polar Classification for Surface Reconstruction. Computer Graphics Forum 30(7), 2003–2010 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chih Yen
    • 1
  • Hong-Ren Su
    • 1
  • Shang-Hong Lai
    • 1
  • Kai-Che Liu
    • 2
  • Ruen-Rone Lee
    • 1
  1. 1.Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan
  2. 2.Chang Bing Show Chwan Memorial HospitalChanghuaTaiwan

Personalised recommendations