An Experimental Evaluation of Reservoir Computation for Ambient Assisted Living

  • Davide Bacciu
  • Stefano Chessa
  • Claudio Gallicchio
  • Alessio Micheli
  • Paolo Barsocchi
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 19)

Abstract

In this paper we investigate the introduction of Reservoir Computing (RC) neural network models in the context of AAL (Ambient Assisted Living) and self-learning robot ecologies, with a focus on the computational constraints related to the implementation over a network of sensors. Specifically, we experimentally study the relationship between architectural parameters influencing the computational cost of the models and the performance on a task of user movements prediction from sensors signal streams. The RC shows favorable scaling properties results for the analyzed AAL task.

Keywords

Reservoir Computing Echo State Networks Wireless Sensor Networks Ambient Assisted Living 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amato, G., Broxvall, M., Chessa, S., Dragone, M., Gennaro, C., Lopez, R., Maguire, L., Mcginnity, M., Micheli, A., Renteria, A., O’Hare, G., Pecora, F.: Robotic UBIquitous COgnitive Network. In: Proceedings of the 3rd International Symposium on Ambient Intelligence (ISAMI), Salamanca, March 28-30 (To Appear, 2012)Google Scholar
  2. 2.
    Antonelo, E.A., Schrauwen, B., Stroobandt, D.: Event detection and localization for small mobile robots using reservoir computing. Neural Networks 21(6), 862–871 (2008)CrossRefGoogle Scholar
  3. 3.
    Bacciu, D., Broxvall, M., Coleman, S., Dragone, M., Gallicchio, C., Gennaro, C., Guzman, R., Lopez, R., Lozano-Peiteado, H., Ray, A., Renteria, A., Saffiotti, A., Vairo, C.: Self-Sustaining Learning for Robotic Ecologies. In: Proceedings of the 1st International Conference on Sensor Networks (SensorNets), Rome, February 24- 26 (To Appear, 2012)Google Scholar
  4. 4.
    Bacciu, D., Gallicchio, C., Micheli, A., Chessa, S., Barsocchi, P.: Predicting user movements in heterogeneous indoor environments by reservoir computing. In: Bhatt, M., Guesgen, H.W., Augusto, J.C. (eds.) Proceedings of the IJCAI Workshop on Space, Time and Ambient Intelligence STAMI 2011, pp. 1–6 (2011)Google Scholar
  5. 5.
    Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Computer Communications 30(7), 1655–1695 (2007)CrossRefGoogle Scholar
  6. 6.
    Chang, M., Terzis, A., Bonnet, P.: Mote-Based Online Anomaly Detection Using Echo State Networks. In: Krishnamachari, B., Suri, S., Heinzelman, W., Mitra, U. (eds.) DCOSS 2009. LNCS, vol. 5516, pp. 72–86. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Crossbow Technology Inc.: http://www.xbow.com
  8. 8.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, L., Burgelman, J.: Scenarios for Ambient Intelligence in 2010. Tech. rep., IST Advisory Group (February 2001)Google Scholar
  9. 9.
    Gallicchio, C., Micheli, A.: Architectural and markovian factors of echo state networks. Neural Networks 24(5), 440–456 (2011)CrossRefGoogle Scholar
  10. 10.
    Gallicchio, C., Micheli, A., Barsocchi, P., Chessa, S.: User movements forecasting by reservoir computing using signal streams produced by mote-class sensors. In: Del Ser, J., Jorswieck, E.A., Miguez, J., Matinmikko, M., Palomar, D.P., Salcedo-Sanz, S., Gil-Lopez, S. (eds.) Mobilight 2011. LNICST, vol. 81, pp. 151–168. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks. Tech. rep., GMD - German National Research Institute for Computer Science (2001)Google Scholar
  12. 12.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  13. 13.
    Jaeger, H., Lukosevicius, M., Popovici, D., Siewert, U.: Optimization and applications of echo state networks with leaky-integrator neurons. Neural Networks 20(3), 335–352 (2007)MATHCrossRefGoogle Scholar
  14. 14.
    Lukosevicius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Computer Science Review 3(3), 127–149 (2009)CrossRefGoogle Scholar
  15. 15.
    Rodan, A., Tiňo, P.: Minimum complexity echo state network. IEEE Transactions on Neural Networks 22(1), 131–144 (2011)CrossRefGoogle Scholar
  16. 16.
    Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Davide Bacciu
    • 1
  • Stefano Chessa
    • 1
  • Claudio Gallicchio
    • 1
  • Alessio Micheli
    • 1
  • Paolo Barsocchi
    • 2
  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly
  2. 2.Pisa Research AreaISTI-CNRPisaItaly

Personalised recommendations