Tuning the Optimization Parameter Set for Code Size

  • N. A. B. Sankar Chebolu
  • Rajeev Wankar
  • Raghavendra Rao Chillarige
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7694)


Determining nearly optimal optimization options for modern day compilers is a combinatorial problem. Added to this, specific to a given application, platform and optimization objective, fine tuning the parameter set being used by various optimization passes, enhance the complexity further. In this paper we propose a greedy based iterative approach and investigate the impact of fine-tuning the parameter set on the code size. The effectiveness of our approach is demonstrated on some of benchmark programs from SPEC2006 benchmark suite that there is a significant impact of tuning the parameter values on the code size.


Optimization Sequence Code Size Compiler Optimization Optimization Option Benchmark Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haneda, M., Knijnenburg, P.M.W., Wijshoff, H.A.G.: Automatic Selection of Compiler Options using Non-Parametric Inferential statistics. In: 14th International Conference on Parallel Architectures and Compilation Techniques (PACT 2005) (2005)Google Scholar
  2. 2.
    Adve, V.: The Next Generation of Compilers. In: Proc. of CGO (2009)Google Scholar
  3. 3.
    Duranton, M., Black-Schaffer, D., Yehia, S., De Bosschere, K.: Computing Systems: Research Challenges Ahead The HiPEAC Vision 2011/2012Google Scholar
  4. 4.
    Kulkarni, P.A., Hines, S.R., Whalley, D.B., et al.: Fast and Efficient Searches for Effective Optimization-phase Sequences. Transactions on Architecture and Code Optimization (2005)Google Scholar
  5. 5.
    Leather, H., O’Boyle, M., Worton, B.: Raced Profiles: Efficient Selection of Competing Compiler Optimizations. In: Proc. of LCTES (2009)Google Scholar
  6. 6.
    Agakov, F., Bonilla, E., Cavazos, J., et al.: Using Machine Learning to Focus Iterative Optimization. In: Proc. of CGO (2006)Google Scholar
  7. 7.
    Cooper, K.D., Schielke, P.J., Subramanian, D.: Optimizing for Reduced Code Space using Genetic Algorithms. SIGPLAN Not. 34(7) (1999)Google Scholar
  8. 8.
    Khedkar, U., Govindrajan, R.: Compiler Analysis and Optimizations: What is New? In: Proc. of Hipc (2003)Google Scholar
  9. 9.
    Beszédes, Á., Gergely, T., Gyimóthy, T., Lóki, G., Vidács, L.: Optimizing for Space: Measurements and Possibilities for Improvement. In: Proc. of GCC Developers Summit (2003)Google Scholar
  10. 10.
    GCC, the GNU Compiler Collection - online documentation,
  11. 11.
    Novillo, D.: Performance Tuning with GCC. Red Hat Magazine (September 2005)Google Scholar
  12. 12.
    SPEC-Standard Performance Evaluation Corporation,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • N. A. B. Sankar Chebolu
    • 1
    • 2
  • Rajeev Wankar
    • 2
  • Raghavendra Rao Chillarige
    • 2
  1. 1.ANURAGHyderabadIndia
  2. 2.Department of Computer and Information SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations