Agent-Based Control System for Sustainable Wastewater Treatment Process

  • Grzegorz Polaków
  • Mieczyslaw Metzger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7694)


Biotechnological processes are difficult to control; many different state trajectories can be obtained from the same starting conditions. A well-known process of this class encountered in the industry is the wastewater treatment process with activated sludge. In this case, the quality of process control has a strong direct impact on the natural environment. Moreover, the crucial components of the processes are living organisms, which require appropriate actions to be taken to ensure their sustainability. This paper describes the agent-based approach to the operating control tasks for the process. The implemented control system is described, which is based on a real-time agent communication protocol implementing a blackboard knowledge system. Additional functionalities of the control system include the support for a cooperation between multiple experimenters, and on-line real-time modelling of the system providing the aid in a decision making.


Agent and multiagent systems artificial intelligence cooperation distributed computer control sustainability self-sustained oscillations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. Knowl. Eng. Rev. 10, 115–152 (1995)CrossRefGoogle Scholar
  2. 2.
    Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Development. Auton. Agent. Multi-Ag. 1, 7–38 (1998)CrossRefGoogle Scholar
  3. 3.
    Nwana, H.S.: Software Agents: An Overview. Knowl. Eng. Rev. 11(3), 205–244 (1996)CrossRefGoogle Scholar
  4. 4.
    Van Dyke Parunak, H.: Go to the ant: Engineering principles from natural multi-agent systems. Ann. Oper. Res. 75, 69–101 (1997)MATHCrossRefGoogle Scholar
  5. 5.
    Van Dyke Parunak, H., Sauter, J., Fleischer, M., Ward, A.: The RAPPID Project: Symbiosis between Industrial Requirements and MAS Research. Auton. Agent. Multi-Ag. 2(2), 111–140 (1999)CrossRefGoogle Scholar
  6. 6.
    Colombo, A., Schoop, R., Neubert, R.: An agent-based intelligent control platform for industrial holonic manufacturing systems. IEEE T. Ind. Electron. 53(1), 322–337 (2006)CrossRefGoogle Scholar
  7. 7.
    Pechoucek, M., Marik, V.: Industrial deployment of multi-agent technologies: review and selected case studies. Auton. Agent. Multi-Ag. 17, 397–431 (2008)CrossRefGoogle Scholar
  8. 8.
    Brennan, R.: Toward Real-Time Distributed Intelligent Control: A Survey of Research Themes and Applications. IEEE T. Syst. Man Cyb. C 37(5), 744–765 (2007)CrossRefGoogle Scholar
  9. 9.
    Vyatkin, V.: IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-the-Art Review. IEEE T. Ind. Inform. 7, 768–781 (2011)CrossRefGoogle Scholar
  10. 10.
    Metzger, M., Polakow, G.: A Survey on Applications of Agent Technology in Industrial Process Control. IEEE T. Ind. Inform. 7, 570–581 (2011)CrossRefGoogle Scholar
  11. 11.
    Roeleveld, P.J., Klapwijk, A., Eggels, P.G., Rulkens, W.H., van Starkenburg, W.: Sustainability of municipal wastewater treatment. Wat. Sci. Techn. 35, 221–228 (1997)CrossRefGoogle Scholar
  12. 12.
    Balkema, A.J., Preisig, H.A., Otterpohl, R., Lambert, F.J.D.: Indicators for the sustainability assessment of wastewater treatment systems. Urban Water 4, 153–161 (2002)CrossRefGoogle Scholar
  13. 13.
    Grönlund, E., Klang, A., Falk, S., Hanæus, J.: Sustainability of wastewater treatment with microalgae in cold climate, evaluated with emergy and socio-ecological principles. Ecological Engineering 22, 155–174 (2004)CrossRefGoogle Scholar
  14. 14.
    Guglielmi, G., Chiarani, D., Judd, S.J., Andreottola, G.: Flux criticality and sustainability in a hollow fibre submerged membrane bioreactor for municipal wastewater treatment. Journal of Membrane Science 289, 241–248 (2007)CrossRefGoogle Scholar
  15. 15.
    Manefield, M., Whiteley, A., Curtis, T., Watanabe, K.: Influence of Sustainability and Immigration in Assembling Bacterial Populations of Known Size and Function. Microbial. Ecology 53, 348–354 (2007)CrossRefGoogle Scholar
  16. 16.
    Sharma, Y., Li, B.: Optimizing hydrogen production from organic wastewater treatment in batch reactors through experimental and kinetic analysis. International Journal of Hydrogen Energy 34, 6171–6180 (2009)CrossRefGoogle Scholar
  17. 17.
    Chen, Z.M., Chen, B., Chen, G.Q.: Cosmic exergy based ecological assessment for a wetland in Beijing. Ecological Modelling 222, 322–329 (2011)CrossRefGoogle Scholar
  18. 18.
    Czeczot, J., Laszczyk, P., Metzger, M.: Local balance-based adaptive control in the heat distribution system - Practical validation. Appl. Therm. Eng. 30(8-9), 879–891 (2010)CrossRefGoogle Scholar
  19. 19.
    Skupin, P., Metzger, M.: Cooperative Operating Control for Induction or Elimination of Self-sustained Oscillations in CSTB. In: Luo, Y. (ed.) CDVE 2011. LNCS, vol. 6874, pp. 66–73. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Skupin, P., Metzger, M.: Agent-Based Control of Self-sustained Oscillations in Industrial Processes: A Bioreactor Case Study. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS (LNAI), vol. 7327, pp. 209–218. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Turek-Szytow, J., Choinski, D., Miksch, K.: Properties of the activated sludge after lipase bioaugmentation. Environ. Prot. Eng. 33, 211–219 (2007)Google Scholar
  22. 22.
    Choinski, D., Wiechetek, A., Turek–Szytow, J., Miksch, K.: Physical properties of activated sludge controlled by flocculation for oil contamination removal. In: Proc. IWA Chemical Industries International Conference, pp. 83–91 (2008)Google Scholar
  23. 23.
    Metzger, M.: Fast-mode real-time simulator for the wastewater treatment process. Water Sci. Technol. 30(4), 191–197 (1994)MathSciNetGoogle Scholar
  24. 24.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with Jade. John Wiley & Sons, Chichester (2007)CrossRefGoogle Scholar
  25. 25.
    Polaków, G., Metzger, M.: Agent-Based Framework for Distributed Real-Time Simulation of Dynamical Systems. In: Håkansson, A., Nguyen, N.T., Hartung, R.L., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2009. LNCS (LNAI), vol. 5559, pp. 213–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Polaków, G., Metzger, M.: pPDC Blackboard Broadcasting in Agent-Based Distributed Process Control. In: O’Shea, J., Nguyen, N.T., Crockett, K., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2011. LNCS (LNAI), vol. 6682, pp. 241–250. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    WorldFIP home page,
  28. 28.
    Polaków, G.: Collaboration Support in a Web-Based SCADA System. In: Luo, Y. (ed.) CDVE 2010. LNCS, vol. 6240, pp. 258–261. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Choinski, D., Metzger, M., Nocon, W., Polaków, G., Rozalowska, B., Skupin, P.: Cooperative Access to Hierarchical Data from Biotechnological Pilot-Plant. In: Luo, Y. (ed.) CDVE 2012. LNCS, vol. 7467, pp. 171–178. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Grzegorz Polaków
    • 1
  • Mieczyslaw Metzger
    • 1
  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland

Personalised recommendations