Graph-Based Inter-subject Classification of Local fMRI Patterns

  • Sylvain Takerkart
  • Guillaume Auzias
  • Bertrand Thirion
  • Daniele Schön
  • Liva Ralaivola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7588)


Classification of medical images in multi-subjects settings is a difficult challenge due to the variability that exists between individuals. Here we introduce a new graph-based framework designed to deal with inter-subject functional variability present in fMRI data. A graphical model is constructed to encode the functional, geometric and structural properties of local activation patterns. We then design a specific graph kernel, allowing to conduct SVM classification in graph space. Experiments conducted in an inter-subject classification task of patterns recorded in the auditory cortex show that it is the only approach to perform above chance level, among a wide range of tested methods.


fMRI classification graphs kernels inter-subject variability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auzias, G., Lefèvre, J., Le Troter, A., Fischer, C., Perrot, M., Régis, J., Coulon, O.: Model-Driven Harmonic Parameterization of the Cortical Surface. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS (LNAI), vol. 6892, pp. 310–317. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Caputo, B., Sim, K., Furesjo, F., Smola, A.: Appearance-based object recognition using svms: which kernel should i use? In: Proc. of NIPS Workshop on Stat. Methods for Computational Experiments in Visual Processing and Computer Vision (2002)Google Scholar
  3. 3.
    Clithero, J.A., Smith, D.V., Carter, R.M., Huettel, S.A.: Within- and cross-participant classifiers reveal different neural coding of information. NeuroImage 56(2), 699–708 (2011); Multivariate Decoding and Brain ReadingGoogle Scholar
  4. 4.
    Van Essen, D.C., Dierker, D.L.: Surface-Based and probabilistic atlases of primate cerebral cortex. Neuron 56(2), 209–225 (2007)CrossRefGoogle Scholar
  5. 5.
    Flandin, G., Kherif, F., Pennec, X., Malandain, G., Ayache, N., Poline, J.-B.: Improved Detection Sensitivity in Functional MRI Data Using a Brain Parcelling Technique. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 467–474. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Gärtner, T.: Exponential and geometric kernels for graphs. In: NIPS Workshop on Unreal Data: Principles of Modeling Nonvectorial Data (2002)Google Scholar
  7. 7.
    Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, UC Santa Cruz (1999)Google Scholar
  8. 8.
    Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539), 2425–2430 (2001)CrossRefGoogle Scholar
  9. 9.
    Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R., Gobbini, M.I., Hanke, M., Ramadge, P.J.: A common, High-Dimensional model of the representational space in human ventral temporal cortex. Neuron 72(2), 404–416 (2011)CrossRefGoogle Scholar
  10. 10.
    Humphries, C., Liebenthal, E., Binder, J.R.: Tonotopic organization of human auditory cortex. NeuroImage 50(3), 1202–1211 (2010)CrossRefGoogle Scholar
  11. 11.
    Mahé, P., Vert, J.P.: Graph kernels based on tree patterns for molecules. Machine Learning 75, 3–35 (2009)CrossRefGoogle Scholar
  12. 12.
    Michel, V., Gramfort, A., Varoquaux, G., Eger, E., Keribin, C., Thirion, B.: A supervised clustering approach for fMRI-based inference of brain states. Pattern Recognition 45(6), 2041–2049 (2012)zbMATHCrossRefGoogle Scholar
  13. 13.
    Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10(9), 424–430 (2006)CrossRefGoogle Scholar
  14. 14.
    Pavlidis, T.: Structural pattern recognition. Springer (1977)Google Scholar
  15. 15.
    Poldrack, R.A., Halchenko, Y.O., Hanson, S.J.: Decoding the Large-Scale structure of brain function by classifying mental states across individuals. Psychological Science 20(11), 1364–1372 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sylvain Takerkart
    • 1
    • 2
  • Guillaume Auzias
    • 3
    • 1
  • Bertrand Thirion
    • 4
  • Daniele Schön
    • 5
  • Liva Ralaivola
    • 2
  1. 1.CNRS, INT (UMR 7289)MarseilleFrance
  2. 2.LIF (UMR 7189)Aix-Marseille UniversityMarseilleFrance
  3. 3.CNRS, LSIS (UMR 7296)MarseilleFrance
  4. 4.INRIA-Saclay-Ile-de-France, Parietal TeamPalaiseauFrance
  5. 5.CNRS, INS (UMR 1106)MarseilleFrance

Personalised recommendations