Stellar Populations in the Galactic Center

  • G. Bono
  • N. Matsunaga
  • L. Inno
  • E. P. Lagioia
  • K. Genovali
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 34)


We discuss the stellar content of the Galactic Center, and in particular, recent estimates of the star formation rate (SFR). We discuss pros and cons of the different stellar tracers and focus our attention on the SFR based on the three classical Cepheids recently discovered in the Galactic Center. We also discuss stellar populations in field and cluster stars and present some preliminary results based on near-infrared photometry of a field centered on the young massive cluster Arches. We also provide a new estimate of the true distance modulus to the Galactic Center and we found 14. 49 ± 0. 02(standard) ± 0.10(systematic) mag (7. 91 ± 0. 08 ± 0. 40 kpc). Current estimate agrees quite well with similar photometric and kinematic distance determinations available in the literature. We also discuss the metallicity gradient of the thin disk and the sharp change in the slope when moving across the edge of the inner disk, the Galactic Bar and the Galactic Center. The difference becomes even more compelling if we take into account that metal abundances are based on young stellar tracers (classical Cepheids, Red Supergiants, Luminous Blue Variables). Finally, we briefly outline the possible mechanisms that might account for current empirical evidence.


Stellar Population Star Formation Rate Iron Abundance Outer Disk Galactocentric Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to thank M. Fabrizio for a detailed and critical reading of an early version of this manuscript. One of us GB thanks ASTROMUNDUS and the Department of Astronomy, University of Belgrade for their warm hospitality. We are indebted to the great patience and the constant support from the editors. This work was partially supported by the PRIN MIUR 2011 (P.I. M. Marconi). We are grateful to Jorgen Melnik for the detailed reading of an early draft of this manuscript, and in particular for drawing to our attention the thorny problems connected with NIR photometric calibration.


  1. 1.
    Allard, E. L.; Knapen, J. H.; Peletier, R. F.; Sarzi, M.: The star formation history and evolution of the circumnuclear region of M100. Mont. Notic. Royal Astron. Soc. 371, 1087 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Andrievsky, S. M.; et al.: Using Cepheids to determine the galactic abundance gradient. III. First results for the outer disc. Astron. & Astroph. 392, 491 (2002)Google Scholar
  3. 3.
    Andrievsky, S. M.; Luck, R. E.; Martin, P.; Lépine, J. R. D.: The Galactic abundance gradient from Cepheids. V. Transition zone between 10 and 11 kpc. Astron. & Astroph. 413, 159 (2004)Google Scholar
  4. 4.
    Athanassoula, E.: The existence and shapes of dust lanes in galactic bars. Mont. Notic. Royal Astron. Soc. 259, 345 (1992)ADSGoogle Scholar
  5. 5.
    Barbuy, B.; et al.: VLT-FLAMES analysis of 8 giants in the bulge metal-poor globular cluster NGC 6522: oldest cluster in the Galaxy?. Analysis of 8 giants in NGC 6522. Astron. & Astroph. 507, 405 (2009)Google Scholar
  6. 6.
    Brand, J., & Blitz, L.: The Velocity Field of the Outer Galaxy. Astron. & Astroph. 275, 67 (1993)ADSGoogle Scholar
  7. 7.
    Bono, G.; Marconi, M.; Stellingwerf, R. F.: Classical Cepheid Pulsation Models. I. Physical Structure. Astroph. J. Suppl. 122, 167 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Bono, G.; Marconi, M.; Cassisi, S.; Caputo, F.; Gieren, W.; Pietrzynski, G.: Classical Cepheid Pulsation Models. X. The Period-Age Relation. Astroph. J. 621, 966 (2005)ADSGoogle Scholar
  9. 9.
    Bono, G.; Caputo, F.; Marconi, M. & Musella, I.: Insights into the Cepheid Distance Scale. Astroph. J. 715, 277 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Carraro, G.; et al.: Old open clusters in the outer Galactic disk. Astron. & Astroph. 476, 217 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Carraro, G.; Costa, E.; Ahumada, J. A.: Photometric Characterization of the Galactic Star Cluster Trumpler 20, Astron. J. 140, 954 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Caputo, F.; Marconi, M.; Musella, I.; Pont, F.: Pulsational constraints to the metallicity gradient in the Galactic disk. Astron. & Astroph. 372, 544 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Cescutti, G.; Matteucci, F.; François, P.; Chiappini, C.: Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium. Astron. & Astroph. 462, 943 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Chiappini, C.; Matteucci, F.: A new Picture for the Galaxy Formation. Astrophysics and Space Science, 265, 425 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Chiappini, C.; Matteucci, F.; Romano, D.: Abundance Gradients and the Formation of the Milky Way. Astroph. J. 554, 1044 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    Cunha, K.; et al.: Chemical Abundances of Luminous Cool Stars in the Galactic Center from High-Resolution Infrared Spectroscopy. Astroph. J. 669, 1011 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Davies, B.; et al.: The Chemical Abundances in the Galactic Center from the Atmospheres of Red Supergiants. Astroph. J. 694, 46 (2009a)ADSCrossRefGoogle Scholar
  18. 18.
    Davies, B.; et al.: Chemical Abundance Patterns in the Inner Galaxy: The Scutum Red Supergiant Clusters. Astroph. J. 696, 2014 (2009b)ADSCrossRefGoogle Scholar
  19. 19.
    Davies, B.; et al.: A newly discovered young massive star cluster at the far end of the Galactic Bar. Mont. Notic. Royal Astron. Soc. 419, 1860 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Debattista, V. P.; Mayer, L.; Carollo, C. M.; Moore, B.; Wadsley, J.; Quinn, T.: The Secular Evolution of Disk Structural Parameters. Astroph. J. 645, 209 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Deharveng, L.; Peña, M.; Caplan, J.; Costero, R.: Oxygen and helium abundances in Galactic HII regions - II. Abundance gradients. Mont. Notic. Royal Astron. Soc. 311, 329 (2000)Google Scholar
  22. 22.
    Espinoza, P.; Selman, F. J.; Melnick, J.: The massive star initial mass function of the Arches cluster. Astron. & Astroph. 501, 563 (2010)Google Scholar
  23. 23.
    Figer, D. F.; McLean, I. S.; Morris, M.: Massive Stars in the Quintuplet Cluster. Astroph. J. 514, 202 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Figer, D. F.; et al.: Massive Stars in the Arches Cluster. Astroph. J. 581, 258 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Figer, D. F.; Rich, R. M.; Kim, S. S.; Morris, M.; Serabyn, E.: An Extended Star Formation History for the Galactic Center from Hubble Space Telescope NICMOS Observations. Astroph. J. 601, 319 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Figer, D. F.; et al.: Discovery of an Extraordinarily Massive Cluster of Red Supergiants. Astroph. J. 643, 1166 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Friedli, D.; Benz, W.: Secular evolution of isolated barred galaxies. II. Coupling between stars and interstellar medium via star formation. Astron. & Astroph. 301, 649 (1995)Google Scholar
  28. 28.
    Friel, E. D.; et al.: Metallicities of Old Open Clusters. AJ 124, 2693 (2002)Google Scholar
  29. 29.
    Fritz, T. K.; Gillessen, S.; Dodds-Eden, K., et al.: Astroph. J. 737, 73 (2011)Google Scholar
  30. 30.
    Genzel, R.; Eckart, A.; Ott, T.; Eisenhauer, F.: On the nature of the dark mass in the centre of the Milky Way. Mont. Notic. Royal Astron. Soc. 291, 219 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    Gillessen, S.; et al.: Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center. Astroph. J. 692, 1075 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Graham, A. W., & Guzmán, R.: HST Photometry of Dwarf Elliptical Galaxies in Coma, and an Explanation for the Alleged Structural Dichotomy between Dwarf and Bright Elliptical Galaxies. Astronomical Journal. 125, 2936 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Hill, V.; et al.: The metallicity distribution of bulge clump giants in Baade’s window. Astron. & Astroph. 534, 80 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Honma, M., & Sofue, Y.: Rotation Curve of the Galaxy. Publications of the Astronomical Society of Japan, 49, 453 (1997)ADSGoogle Scholar
  35. 35.
    Inno, L.; et al.: On the distance of the Magellanic Clouds using Cepheid NIR and optical – NIR period – Wesenheit relations. Astroph. J. 764, 84 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Inno, L.; et al.: The Classical Cepheid Distance scale in the NIR bands. Journal of Physics: Conference Series. 383, 012008 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Kim, S. S.; et al.: The Arches Cluster Mass Function. Astroph. J. 653, 113 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Kim, S. S.; Saitoh, T. R.; Jeon, M.; Figer, D. F.; Merritt, D.; Wada, K.: Nuclear Star-forming Ring of the Milky Way: Simulations. Astroph. J. 735, 11 (2011a)ADSCrossRefGoogle Scholar
  39. 39.
    Kim, J.; et al.: Galaxy Formation with Self-consistently Modeled Stars and Massive Black Holes. I. Feedback-regulated Star Formation and Black Hole Growth. Astroph. J. 738, 54 (2011b)Google Scholar
  40. 40.
    Kormendy, J.; Kennicutt, R. C.: Secular Evolution and the Formation of Pseudobulges in Disk Galaxies. Ann. Rev. Astron & Astroph. 42, 603 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Kormendy, J.; Fisher, D. B.; Cornell, M. E.; Bender, R.: Structure and Formation of Elliptical and Spheroidal Galaxies. Astroph. J. Suppl. 182, 216 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Kovtyukh, V. V.; Wallerstein, G.; Andrievsky, S. M.: Galactic Cepheids. I. Elemental Abundances and Their Implementation for Stellar and Galactic Evolution. Publ. Astron. Soc. Pacific 117, 1173 (2005)Google Scholar
  43. 43.
    Lagioia, E.P.; et al.: Deep and accurate near infrared photometry of the young massive cluster Arches. in preparationGoogle Scholar
  44. 44.
    Launhardt, R.; Zylka, R.; Mezger, P. G.: The nuclear bulge of the Galaxy. III. Large-scale physical characteristics of stars and interstellar matter. Astron. & Astroph. 384, 112 (2002)Google Scholar
  45. 45.
    Lemasle, B.; François, P.; Bono, G.; Mottini, M.; Primas, F.; Romaniello, M.: Detailed chemical composition of Galactic Cepheids. A determination of the Galactic abundance gradient in the 8–12 kpc region. Astron. & Astroph. 467, 283 (2007)Google Scholar
  46. 46.
    Lemasle, B.; François, P.; Piersimoni, A.; Pedicelli, S.; Bono, G.; Laney, C. D.; Primas, F.; Romaniello, M.: Galactic abundance gradients from Cepheids. On the iron abundance gradient around 10–12 kpc. Astron. & Astroph. 490, 613 (2008)Google Scholar
  47. 47.
    Liermann, A.; et al.: The Quintuplet cluster. II. Analysis of the WN stars. Astron. & Astroph. 524, 82 (2010)Google Scholar
  48. 48.
    Lubowich, D. A.; et al.: Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas. Nature 405, 1025 (2000)ADSCrossRefGoogle Scholar
  49. 49.
    Luck, R. E.; et al: The galactic abundance gradient from Cepheids. IV. New results for the outer disc. Astron. & Astroph. 401, 939 (2003)Google Scholar
  50. 50.
    Luck, R. E.; Kovtyukh, V. V.; Andrievsky, S. M.: The Distribution of the Elements in the Galactic Disk. AJ 132, 902 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    Luck, R. E.; et al.: The Distribution of the Elements in the Galactic Disk. II. Azimuthal and Radial Variation in Abundances from Cepheids. AJ 142, 51 (2011a)Google Scholar
  52. 52.
    Luck, R. E.; Lambert, D. L.: The Distribution of the Elements in the Galactic Disk. III. A Reconsideration of Cepheids from l = 30 ∘  to 250 ∘ . AJ 142, 136 (2011b)Google Scholar
  53. 53.
    Marconi, M.; Musella, I.; & Fiorentino, G.: Cepheid Pulsation Models at Varying Metallicity and ΔY ∕ ΔZ. Astroph. J., 632, 590 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    Martins, F.; et al.: Stellar and wind properties of massive stars in the central parsec of the Galaxy. Astron. & Astroph. 468, 233 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Martins, F.; et al.: The most massive stars in the Arches cluster. Astron. & Astroph. 478, 219 (2008)ADSCrossRefGoogle Scholar
  56. 56.
    Matsunaga, N.; Kawadu, T.; Nishiyama, S.; Nagayama, T.; Kobayashi, N.; Tamura, M.; Bono, G.; Feast, M. W.; Nagata, T.: Three classical Cepheid variable stars in the nuclear bulge of the Milky Way. Nature 477, 188 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Matsunaga, N.; et al.: Cepheids another short period variables near the Galactic centre. Mont. Notic. Royal Astron. Soc. submitted (2012)Google Scholar
  58. 58.
    Mezger, P. G.; Zylka, R.; Philipp, S.; Launhardt, R.: The nuclear bulge of the Galaxy. II. The K band luminosity function of the central 30 PC. Astron. & Astroph. 348, 457 (1999)Google Scholar
  59. 59.
    Najarro, F.; et al.: Metallicity in the Galactic Center: The Arches Cluster. Astroph. J. 611, 105 (2004)ADSCrossRefGoogle Scholar
  60. 60.
    Najarro, F.; et al.: Metallicity in the Galactic Center: The Quintuplet Cluster. Astroph. J. 691, 181 (2009)CrossRefGoogle Scholar
  61. 61.
    Nishiyama, S.; et al.: Interstellar Extinction Law in the J, H, and Ks Bands toward the Galactic Center. Astroph. J. 638, 839 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    Nishiyama, S.; et al.: Interstellar Extinction Law Toward the Galactic Center III: J, H, KS Bands in the 2MASS and the MKO Systems, and 3.6, 4.5, 5.8, 8.0 ?m in the Spitzer/IRAC System. Astroph. J. 696,1407 (2009)Google Scholar
  63. 63.
    Pedicelli, S.; Bono, G.; Lemasle, B.; et al.: On the metallicity gradient of the Galactic disk. Astron. & Astroph. 504, 81 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Pedicelli, S.; et al.: New Baade-Wesselink distances and radii for four metal-rich Galactic Cepheids. Astron. & Astroph. 518, 11 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Philipp, S.; et al.: The nuclear bulge. I. K band observations of the central 30 PC. Astron. & Astroph. 348, 768 (1999)Google Scholar
  66. 66.
    Pietrinferni, A.; Cassisi, S.; Salaris, M.; Castelli, F.: A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones. Astroph. J. 612, 168 (2004)Google Scholar
  67. 67.
    Pietrinferni, A.; Cassisi, S.; Salaris, M.; Castelli, F.: A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution. Astroph. J. 642, 797 (2006)Google Scholar
  68. 68.
    Portinari, L.; Chiosi, C.: On radial gas flows, the Galactic Bar and chemical evolution in the Galactic Disc. Astron. & Astroph. 355, 929 (2000)ADSGoogle Scholar
  69. 69.
    Prada Moroni, P. G.; et al.: On the Evolutionary and Pulsation Mass of Classical Cepheids. III. The Case of the Eclipsing Binary Cepheid CEP0227 in the Large Magellanic Cloud. Astroph. J. 749, 108 (2012)Google Scholar
  70. 70.
    Reid, M. J.; Menten, K. M.; Zheng, X. W. et al.: Trigonometric Parallaxes of Massive Star-Forming Regions. VI. Galactic Structure, Fundamental Parameters, and Noncircular Motions. Astroph. J. 700, 137 (2009)Google Scholar
  71. 71.
    Reid, M. J.; Menten, K. M.; Zheng, X. W. et al.: A Trigonometric Parallax of Sgr B2. Astroph. J. 705, 1548 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    Selman, F.; Melnick, J.; Bosch, G.; Terlevich, R.: Astron. & Astroph. 341, 98 (1999)ADSGoogle Scholar
  73. 73.
    Serabyn, E.; Morris, M.: Sustained star formation in the central stellar cluster of the Milky Way. Nature 382, 602 (1996)ADSCrossRefGoogle Scholar
  74. 74.
    Sharples, R.; Bender, R.; Agudo Berbel, A.; et al.: Recent Progress on the KMOS Multi-object Integral Field Spectrometer. The Messenger, 139, 24 (2010)ADSGoogle Scholar
  75. 75.
    Stetson, P. B.: The center of the core-cusp globular cluster M15: CFHT and HST Observations, ALLFRAME reductions PASP 106, 250 (1994)CrossRefGoogle Scholar
  76. 76.
    Stolte, A.; et al.: The Arches Cluster: Evidence for a Truncated Mass Function? Astroph. J. 628, 113 (2005)ADSCrossRefGoogle Scholar
  77. 77.
    Soszyński, I.; Dziembowski, W. A.; Udalski, A. et al.: The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. XI. RR Lyrae Stars in the Galactic Bulge. Acta Astronomica. 61, 1 (2011)Google Scholar
  78. 78.
    Twarog, B. A.; et al.: Some Revised Observational Constraints on the Formation and Evolution of the Galactic Disk. AJ 114, 2556 (1997)ADSCrossRefGoogle Scholar
  79. 79.
    Vallée, J. P.: The Spiral Arms and Interarm Separation of the Milky Way: An Updated Statistical Study. AJ 130, 569 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    van Loon, J. T.; et al.: Infrared stellar populations in the central parts of the Milky Way galaxy. Mont. Notic. Royal Astron. Soc. 338, 857 (2003)ADSCrossRefGoogle Scholar
  81. 81.
    Wakker, B. P.; et al.: Accretion of low-metallicity gas by the Milky Way. Nature 402, 388 (1999)ADSCrossRefGoogle Scholar
  82. 82.
    Yong, D.; et al.: Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids. AJ 131, 2256 (2006)CrossRefGoogle Scholar
  83. 83.
    Yuan, C.: Relationships Between Active Galactic Nuclei and Starburst Galaxies.ASP Conference Series. 31, 127 (1992)Google Scholar
  84. 84.
    Yuan, C. & Kuo, C.-L.: Bar-driven Spiral Density Waves and Accretion in Gaseous Disks.Astroph. J. 486, 750 (1997)ADSCrossRefGoogle Scholar
  85. 85.
    Yusef-Zadeh, F.; et al.: Star Formation in the Central 400 pc of the Milky Way: Evidence for a Population of Massive Young Stellar Objects. Astroph. J. 702, 178 (2009)ADSCrossRefGoogle Scholar
  86. 86.
    Zánmar Sánchez, R.; Sellwood, J. A.; Weiner, B. J.; Williams, T. B.: Modeling the Gas Flow in the Bar of NGC 1365. Astroph. J. 674, 797 (2008)ADSCrossRefGoogle Scholar
  87. 87.
    Zaritsky, D.; Kennicutt, R. C.; Huchra, J.P.: H II regions and the abundance properties of spiral galaxies. Astroph. J. 420, 87 (1994)ADSCrossRefGoogle Scholar
  88. 88.
    Zoccali, M., Renzini, A., Ortolani, S., et al.: Age and metallicity distribution of the Galactic bulge from extensive optical and near-IR stellar photometry. Astron. & Astroph. 399, 931 (2003)ADSCrossRefGoogle Scholar
  89. 89.
    Zoccali, M.; et al.: The metal content of bulge field stars from FLAMES-GIRAFFE spectra. I. Stellar parameters and iron abundances. Astron. & Astroph. 486, 177 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • G. Bono
    • 1
    • 2
    • 3
  • N. Matsunaga
    • 4
  • L. Inno
    • 1
  • E. P. Lagioia
    • 1
  • K. Genovali
    • 1
  1. 1.Dipartimento di FisicaUniversita’ di Roma Tor VergataRomaItaly
  2. 2.INAF– Osservatorio Astronomico di RomaMonte Porzio CatoneItaly
  3. 3.European Souther ObservatoryGarching bei MünchenGermany
  4. 4.Department of Astronomy, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations