Advertisement

New Approaches for Alzheimer’s Disease Diagnosis Based on Automatic Spontaneous Speech Analysis and Emotional Temperature

  • Karmele López-de-Ipiña
  • Jesús B. Alonso
  • Nora Barroso
  • Marcos Faundez-Zanuy
  • Miriam Ecay
  • Jordi Solé-Casals
  • Carlos M. Travieso
  • Ainara Estanga
  • Aitzol Ezeiza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7657)

Abstract

Alzheimer Disease (AD) is one of the most common dementia and their socio-economic relevance is growing. Its diagnosis is sometimes made by excluding other dementias, but definitive confirmation must await the study post-mortem with brain tissue of the patient. According to internationally accepted criteria, we can only speak about probable or possible Alzheimer’s disease. The purpose of this paper is to contribute to improve early diagnosis of dementia and severity from automatic analysis performed by non-invasive automated intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET). These methodologies have the great advantage of being non invasive, low cost methodologies and have no side effects.

Keywords

AD Automatic Spontaneous Speech Analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sociedad Española de Neurología, http://www.sen.es
  2. 2.
    Van de Pol, L.A., et al.: The effects of age and Alzheimer’s disease on hippocampal volumes, a MRI study. Alzheimer’s and Dementia (2005)Google Scholar
  3. 3.
    Morris, J.C.: The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology 43, 2412b–2414b (1993)CrossRefGoogle Scholar
  4. 4.
    American Psychiatric Association, Diagnostic and Statistical Manual of Mental disorders, 4th edn. Text Revision, Washington DC (2000)Google Scholar
  5. 5.
    Buiza, C.: Evaluación y tratamiento de los trastornos del lenguaje. Unidad de Memoria y Alzheimer. Matia Fundazioa. Donostia (2010)Google Scholar
  6. 6.
    Martinez-Sanchez, F., Garcia, M., Perez, E., Carro, J., Arana, J.M.: Patrones de Prosodia expresiva en pacientes con enfermedad de Alzheimer. Psicothema 24, 16–21 (2012)Google Scholar
  7. 7.
    Shimokawa, A., Yatomi, N., Anamizu, S., Torii, S., Isono, H., Sugai, Y., Kohno, M.: Influence of deteriorating ability of emotional comprehension on interpersonal behaviour in Alzheimer-type dementia. Brain and Cognition 47, 423–433 (2001)CrossRefGoogle Scholar
  8. 8.
    Goodkind, M.S., Gyurak, A., McCarthy, M., Miller, B.L., Levenson, R.W.: Emotion regulation deficits in frontotemporal lobar degeneration and Alzheimer’s disease. Psychol. Aging 25(1), 30–37 (2010)CrossRefGoogle Scholar
  9. 9.
    Cadieux, N., Greeve, K.: Emotion processing in Alzheimer’s disease. Journal of the International Neuropsychological Society 3, 411–419 (1997)Google Scholar
  10. 10.
    Faúndez Zanuy, M., Sesa-Nogueras, E., Monte-Moreno, E., Garre-Olmo, J., Lopez-de-Ipiña, K., Viñals, F., Puente, M.L.: Aplicaciones biométricas más allá de la seguridad. In: Proc. VI Jornadas de reconocimiento biométrico de personas, pp. 25–43 (2012)Google Scholar
  11. 11.
    Knapp, M.L.: Essentials of nonverbal communication. Holt, Rinehart & Winston (1980)Google Scholar
  12. 12.
    Cowie, E., et al.: Emotion Recognition in Human-Computer Interaction. IEEE Signal Processing Magazine 18(1), 32–80 (2001)CrossRefGoogle Scholar
  13. 13.
    Plutchnik, R.: Emotion: A psychoevolutionary synthesis. Harper and Row (1980)Google Scholar
  14. 14.
    Pao, T.L., Chien, C.S., Yen, J.H., Chen, Y.T., Cheng, Y.M.: Continuous tracking of user emotion in mandarin emotional speech. In: Proceedings, 3rd International Conference on International Information Hiding and Multimedia Signal Processing, pp. 47–52 (2007)Google Scholar
  15. 15.
    Petrushin, V.A.: Emotion in speech: recognition and application to call centers. In: Proceedings, Conference on Artificial Neural Networks in Engineering, pp. 7–10 (1999)Google Scholar
  16. 16.
    Lee, C.M., Narayanan, S.: Emotion recognition using a data-driven fuzzy interference system. In: Proceedings, 8th ECSCT, pp. 157–160 (2003)Google Scholar
  17. 17.
    Kwon, O.W., Chan, K., Hao, J., Lee, T.W.: Emotion recognition by speech signals. In: Proc.8th European Conference on Speech Communication and Technology, pp. 125–128 (2003)Google Scholar
  18. 18.
    De Cheveigné, A., Kawahara, H.: YIN, a fundamental frequency estimator for speech and music. Journal of the Acoustical Society of America 111(4), 1917–1930 (2002)CrossRefGoogle Scholar
  19. 19.
    Alonso, J., León, J., Alonso, I., Ferrer, M.A.: Automatic detection of pathologies in the voice by HOS base parameters. Journal on Applied Signal Processing 4, 275–284 (2001)CrossRefGoogle Scholar
  20. 20.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2(3), article 27 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Karmele López-de-Ipiña
    • 1
  • Jesús B. Alonso
    • 2
  • Nora Barroso
    • 1
  • Marcos Faundez-Zanuy
    • 3
  • Miriam Ecay
    • 4
  • Jordi Solé-Casals
    • 5
  • Carlos M. Travieso
    • 2
  • Ainara Estanga
    • 4
  • Aitzol Ezeiza
    • 1
  1. 1.System Engineering and Automation DepartmentUniversity of the Basque CountryDonostiaSpain
  2. 2.IDeTIC-DSCUniversidad de Las Palmas de Gran Canaria (ULPGC)Spain
  3. 3.Escola Universitària Politècnica de Mataró (UPC)Spain
  4. 4.Neurology DepartmentCITA-Alzheimer FoundationSpain
  5. 5.Digital Technologies GroupUniversitat de VicSpain

Personalised recommendations