Multiple Structured Light-Based Depth Sensors for Human Motion Analysis: A Review

  • Kyis Essmaeel
  • Luigi Gallo
  • Ernesto Damiani
  • Giuseppe De Pietro
  • Albert Dipandà
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7657)


Human motion analysis is an increasingly important active research domain with various applications in surveillance, human-machine interaction and human posture analysis. The recent developments in depth sensor technology, especially with the release of the Kinect device, have attracted significant attention to the question of how to take advantage of this technology in order to achieve accurate motion tracking and action detection in marker-less approaches. In this paper, we review the benefits and limitations deriving from the adoption of structured light-based depth sensors in human motion analysis applications. Surveying the relevant literature, we have identified in calibration, interference and bias correction the challenges to tackle for an effective adoption of multi-Kinect systems to improve the visual analysis of human movement.


Human Motion Analysis Multiple depth sensors Calibration Interference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Comput. Vis. Image Underst. 73(3), 428–440 (1999)CrossRefGoogle Scholar
  2. 2.
    Moeslund, T.B., Granum, E.: A Survey of Computer Vision-Based Human Motion Capture. Comput. Vis. Image Underst. 18, 231–268 (2001)CrossRefGoogle Scholar
  3. 3.
    Wang, L., Hu, W.: Recent developments in human motion analysis. Pattern Recognition 36(3), 585–601 (2003)CrossRefGoogle Scholar
  4. 4.
    Herda, L., Urtasun, R., Fua, P.: Hierarchical Implicit Surface Joint Limits to Constrain Video-Based Motion Capture. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 405–418. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cerveri, P., Pedotti, A.: Robust recovery of human motion from video using Kalman filters and virtual humans. Human Movement Science 22(3), 377–404 (2003)CrossRefGoogle Scholar
  6. 6.
    Microsoft. Kinect for X-BOX 360 (2010),
  7. 7.
    Poppe, R.: Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108(1-2), 4–18 (2007)CrossRefGoogle Scholar
  8. 8.
    Kehl, R., Van Gool, L.: Marker-less tracking of complex human motions from multiple views. Comput. Vis. Image Underst. 104(2), 190–209 (2006)CrossRefGoogle Scholar
  9. 9.
    Ji, X., Liu, H.: Advances in view-invariant human motion analysis: a review. Trans. Sys. Man Cyber Part C 40(1), 13–24 (2010)Google Scholar
  10. 10.
    Moeslund, T.B., Hilton, A., Kruger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)CrossRefGoogle Scholar
  11. 11.
    Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recognition 36(3), 585–601 (2003)CrossRefGoogle Scholar
  12. 12.
    Smisek, J., Jancosek, M.: 3D with Kinect. In: 2011 IEEE International Conference on Computer Vision Workshops, pp. 1154–1160. IEEE Press, New York (2011)CrossRefGoogle Scholar
  13. 13.
    Hartmann, J., Forouher, D., Litza, M., Klüssendorff, J.H., Maehle, E.: Real-time visual SLAM using FastSLAM and the Microsoft Kinect Camera. ROBOTIK (2012)Google Scholar
  14. 14.
    Clark, R.A., Bryant, A.L.: Validity of the Microsoft Kinect for assessment of postural control. Gait & Posture (2012)Google Scholar
  15. 15.
    Gallo, L., Placitelli, A.P., Ciampi, M.: Controller-free exploration of medical image data: experiencing the Kinect. In: 24th IEEE CBMS, pp. 1–6. IEEE, Los Alamitos (2011)Google Scholar
  16. 16.
    Berger, K., Ruhl, K.: Markless capture using multiple color-depth sensors. In: 2011 Workshop on Vision, Modeling, and Visualization, pp. 317–324. Eurographics Association (2011)Google Scholar
  17. 17.
    Maimone, A., Fuchs, H.: Enhanced personal autostereoscopic telepresence system using commodity depth camera. Computers & Graphics (2012)Google Scholar
  18. 18.
    Maimone, A., Fuchs, H.: Reducing interference between multiple structured light depth sensors using motion. In: 2012 IEEE Virtual Reality Workshops, pp. 51–54. IEEE Press, New York (2012)CrossRefGoogle Scholar
  19. 19.
    Gallo, L., Minutolo, A.: Design and comparative evaluation of Smoothed Pointing: a velocity-oriented remote pointing enhancement technique. Int. J. of Human-Computer Studies 70(4), 287–300 (2012)CrossRefGoogle Scholar
  20. 20.
    Burrus, N.: RGB Demo project (2011),
  21. 21.
    Konolige, K., Mihelich, P.: Technical description of Kinect calibration. Tech. Rep., Willow Garage (2011),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kyis Essmaeel
    • 1
    • 2
    • 3
  • Luigi Gallo
    • 1
  • Ernesto Damiani
    • 2
  • Giuseppe De Pietro
    • 1
  • Albert Dipandà
    • 3
  1. 1.Institute of High Performance Computing and NetworkingItalian National Research CouncilNaplesItaly
  2. 2.Department of Computer TechnologyUniversity of MilanMilanItaly
  3. 3.Laboratoire LE2I (CNRS-UMR 5158), Aile des Sciences de l’IngénieurUniversité de BourgogneDijon CedexFrance

Personalised recommendations