Achieving User Participation for Adaptive Applications

  • Christoph Evers
  • Romy Kniewel
  • Kurt Geihs
  • Ludger Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7656)


Adaptive applications establish the basis for many ubiquitous computing scenarios as they can dynamically adapt to changing contexts. But adaptive applications lack of success when the adaptive behaviour does not correspond to the user’s interaction habits. A user study revealed that such applications are not satisfying for complex scenarios with a high degree of user interaction. We claim that there must be a trade-off between automation and user participation. By extending an existing adaptation middleware with capabilities to respect user preference and interaction behaviour we demonstrate how to integrate the user in the self-adaptation loop. Interdisciplinary results from the fields of usability engineering and interaction design include the need for an adaptation notification concept to avoid mismatching adaptation behaviour.


Ubiquitous Computing Pervasive Computing Adaptation Decision Preference Manager Adaptation Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benyon, D.: Adaptive systems: A solution to usability problems. User Modeling and User-Adapted Interaction 3(1), 65–87 (1993)CrossRefGoogle Scholar
  2. 2.
    Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: A research roadmap. LNCS, pp. 1–26. Springer (2009)Google Scholar
  3. 3.
    Comes, D., Evers, C., Geihs, K., Hoffmann, A., Kniewel, R., Leimeister, J.M., Niemczyk, S., Roßnagel, A., Schmidt, L., Schulz, T., Söllner, M., Witsch, A.: Designing socio-technical applications for ubiquitous computing - results from a multidisciplinary case study. In: 12th IFIP International Conference on Distributed Applications and Interoperable Systems (DAIS), Stockholm, Sweden (2012)Google Scholar
  4. 4.
    Comes, D., Evers, C., Geihs, K., Saur, D., Witsch, A., Zapf, M.: Adaptive applications are smart applications. In: 1st International Workshop on Smart Mobile Applications, San Francisco, CA, USA (2011)Google Scholar
  5. 5.
    Floch, J., et al.: Playing MUSIC — building context-aware and self-adaptive mobile applications. In: Software: Practice and Experience. Wiley (2012)Google Scholar
  6. 6.
    Fong, J., Indulska, J., Robinson, R.: A preference modelling approach to support intelligibility in pervasive applications. In: International Conference on Pervasive Computing and Communications Workshops, pp. 409–414 (2011)Google Scholar
  7. 7.
    FP6 IST MUSIC Project (May 31, 2012),
  8. 8.
    Geihs, K., et al.: A comprehensive solution for application-level adaptation. Softw. Pract. Exper. 39, 385–422 (2009)CrossRefGoogle Scholar
  9. 9.
    van der Heijden, H.: Ubiquitous computing, user control, and user performance: conceptual model and preliminary experimental design. In: Proceedings of the 10th Research Symposium on Emerging Electronic Markets, Bremen, pp. 107–112 (2003)Google Scholar
  10. 10.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Using context and preferences to implement self-adapting pervasive computing applications: Experiences with auto-adaptive and reconfigurable systems. Softw. Pract. Exper. 36, 1307–1330 (2006)CrossRefGoogle Scholar
  11. 11.
    Horvitz, E.: Principles of mixed-initiative user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 159–166. ACM, New York (1999)Google Scholar
  12. 12.
    Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Krause, A., Smailagic, A., Siewiorek, D.P.: Context-aware mobile computing: Learning context-dependent personal preferences from a wearable sensor array. IEEE Transactions on Mobile Computing 5(2), 113–127 (2006)CrossRefGoogle Scholar
  14. 14.
    Kurdyukova, E.: Designing Trustworthy Adaptation on Public Displays. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 442–445. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    McCrickard, D.S., Chewar, C.M.: Attuning notification design to user goals and attention costs. Communications of the ACM 46(3), 67 (2003)CrossRefGoogle Scholar
  16. 16.
    Murch, R.: Autonomic Computing. IBM Press (2004)Google Scholar
  17. 17.
    Nielsen, J.: Ten usability heuristics (2005)Google Scholar
  18. 18.
    Norman, D.A.: The design of everyday things. 1st basic paperback. edition. Basic Books, New York (2002) c1988Google Scholar
  19. 19.
    Peissner, M., Sellner, T.: Transparency and controllability in user interfaces that adapt during run-time. In: Workshop on End-user Interactions with Intelligent and Autonomous Systems. ACM (2012)Google Scholar
  20. 20.
    Ringbauer, B., Kniewel, R., Hipp, C.: Fußgänger sind keine Autos: Benutzerzentrierte Entwicklung eines Fußgängernavigationssystems. In: Usability Professionals 2009: Berichtband des siebten Workshops des German Chapters der Usability Professionals Association e.V, pp. 18–22. Fraunhofer IRB Verlag, Stuttgart (2009)Google Scholar
  21. 21.
    Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and research challenges. Transactions on Autonomous and Adaptive Systems 4(2), 1–42 (2009)CrossRefGoogle Scholar
  22. 22.
    Shneiderman, B., Plaisant, C.: Designing the user interface: Strategies for effective human-computer interaction, 4th edn. Addison Wesley (2005)Google Scholar
  23. 23.
    Söllner, M., Hoffmann, A., Hoffmann, H., Leimeister, J.M.: Towards a theory of explanation and prediction for the formation of trust in it artifacts. In: 10th Annual Workshop on HCI Research in MIS, Shanghai, China, pp. 1–6 (2011)Google Scholar
  24. 24.
    Weld, D.S., Anderson, C., Domingos, P., Etzioni, O., Gajos, K., Lau, T., Wolf, S.: Automatically personalizing user interfaces. In: IJCAI 2003, pp. 1613–1619 (2003)Google Scholar
  25. 25.
    Weyns, D., Iftikhar, M.U., Malek, S., Andersson, J.: Claims and supporting evidence for self-adaptive systems: A literature study. In: SEAMS 2012 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christoph Evers
    • 1
  • Romy Kniewel
    • 2
  • Kurt Geihs
    • 1
  • Ludger Schmidt
    • 2
  1. 1.Distributed Systems GroupUniversity of KasselKasselGermany
  2. 2.Human-Machine Systems EngineeringUniversity of KasselKasselGermany

Personalised recommendations