GreenDisc: A HW/SW Energy Optimization Framework in Globally Distributed Computation

  • Marina Zapater
  • José L. Ayala
  • Jose M. Moya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7656)

Abstract

In recent future, wireless sensor networks (WSNs) will experience a broad high-scale deployment (millions of nodes in the national area) with multiple information sources per node, and with very specific requirements for signal processing. In parallel, the broad range deployment of WSNs facilitates the definition and execution of ambitious studies, with a large input data set and high computational complexity. These computation resources, very often heterogeneous and driven on-demand, can only be satisfied by high-performance Data Centers (DCs). The high economical and environmental impact of the energy consumption in DCs requires aggressive energy optimization policies. These policies have been already detected but not successfully proposed.

In this context, this paper shows the following on-going research lines and obtained results. In the field of WSNs: energy optimization in the processing nodes from different abstraction levels, including reconfigurable application specific architectures, efficient customization of the memory hierarchy, energy-aware management of the wireless interface, and design automation for signal processing applications. In the field of DCs: energy-optimal workload assignment policies in heterogeneous DCs, resource management policies with energy consciousness, and efficient cooling mechanisms that will cooperate in the minimization of the electricity bill of the DCs that process the data provided by the WSNs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feng, J., Koushanfar, F., Potkonjak, M.: System-architectures for sensor networks issues, alternatives, and directions. In: Proceedings of the 20th International Conference on Computer Design (2002)Google Scholar
  2. 2.
    Yassin, Y., Kjeldsberg, P., Hulzink, J., Romero, I., Huisken, J.: Ultra low power application specific instruction-set processor design for a cardiac beat detector algorithm. In: NORCHIP 2009, pp. 1–4 (2009)Google Scholar
  3. 3.
    Kandemir, M.T., Kolcu, I., Kadayif, I.: Influence of Loop Optimizations on Energy Consumption of Multi-bank Memory Systems. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 276–292. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Gordon-Ross, A., Vahid, F., Dutt, N.D.: Fast configurable-cache tuning with a unified second-level cache. IEEE Trans. VLSI Syst. 17(1), 80–91 (2009)CrossRefGoogle Scholar
  5. 5.
    Hauck, S., Fry, T.W., Hosler, M.M., Kao, J.P.: The chimaera reconfigurable functional unit. In: FCCM, pp. 87–93 (1997)Google Scholar
  6. 6.
    Motorola: Morphable functional units, http://ip.com/IPCOM/000004783
  7. 7.
    Solihin, Y., Cameron, K.W., Luo, Y., Lavenier, D., Gokhale, M.: Mutable functional units and their applications on microprocessors. In: ICCD, p. 234 (2001)Google Scholar
  8. 8.
    Barrio, A.A.D., Molina, M.C., Mendias, J.M., Perez, E.A., Hermida, R., Tirado, F.: Applying speculation techniques to implement functional units. In: ICCD, pp. 74–80 (2008)Google Scholar
  9. 9.
    Ramachandran, I., Das, A.K., Roy, S.: Analysis of the contention access period of ieee 802.15.4 mac. TOSN 3(1), 4 (2007)CrossRefGoogle Scholar
  10. 10.
    Neugebauer, M., Plonnigs, J., Kabitzsch, K.: A new beacon order adaptation algorithm for ieee 802.15. 4 networks. In: Proc. European Work. on Wirel. Sens. Netw. (EWSN 2005), pp. 302–311 (2005) (Adaptation)Google Scholar
  11. 11.
    Kim, T.H., Choi, S.: Priority-based delay mitigation for event-monitoring ieee 802.15.4 lr-wpans. IEEE Communications Letters, 213–215 (2006)Google Scholar
  12. 12.
    Bonivento, A., Carloni, L.P., Sangiovanni-Vincentelli, A.: Platform based design for wireless sensor networks. Mob. Netw. Appl. 11(4), 469–485 (2006)CrossRefGoogle Scholar
  13. 13.
    Faza, A.Z., Sedigh-Ali, S.: A general purpose framework for wireless sensor network applications. In: Proc. Annual Intl. Computer Software and Applications Conference, COMPSAC, pp. 356–358 (2006)Google Scholar
  14. 14.
    Iyengar, S., Bonda, F.T., Gravina, R., Guerrieri, A., Fortino, G., Sangiovanni- Vincentelli, A.: A framework for creating healthcare monitoring applications using wireless body sensor networks. In: Proc. ICST Intl. Conf. on Body Area Networks, BodyNets, pp. 8:1–8:2 (2008)Google Scholar
  15. 15.
    Banerjee, A., Mukherjee, T., Varsamopoulos, G., Gupta, S.: Integrating cooling awareness with thermal aware workload placement for hpc data centers. Sustainable Computing: Informatics and Systems 1(2), 134–150 (2011)CrossRefGoogle Scholar
  16. 16.
    Han, Y., Koren, I.: Simulated annealing based temperature aware floorplanning. J. Low Power Electronics 3(2), 141–155 (2007)CrossRefGoogle Scholar
  17. 17.
    Xie, Y., Hung, W.L.: Temperature-aware task allocation and scheduling for embedded multiprocessor systems-on-chip (mpsoc) design. J. VLSI Signal Process. Syst. 45(3), 177–189 (2006)CrossRefGoogle Scholar
  18. 18.
    Pakbaznia, E., Ghasemazar, M., Pedram, M.: Temperature-aware dynamic resource provisioning in a power-optimized datacenter. In: DATE, pp. 124–129 (2010)Google Scholar
  19. 19.
    Hsu, C.H., Feng, W.C.: A power-aware run-time system for high-performance computing. In: Proc. ACM/IEEE Conference on Supercomputing, SC, p. 1 (2005)Google Scholar
  20. 20.
    Zheng, X., Cai, Y.: Markov model based power management in server clusters. In: Proc. IEEE/ACM Int’l Conference on Green Computing and Communications, GREENCOM, pp. 96–102 (2010)Google Scholar
  21. 21.
    Mukherjee, T., Banerjee, A., Varsamopoulos, G., Gupta, S.K.S., Rungta, S.: Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Comput. Netw. 53(17), 2888–2904Google Scholar
  22. 22.
    Wu, G., Xu, Z., Xia, Q., Ren, J., Xia, F.: Task allocation and migration algorithm for temperature-constrained real-time multi-core systems. In: Proc. IEEE/ACM Int’l Conference on Green Computing and Communications, GREENCOM, pp. 189–196 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marina Zapater
    • 1
    • 3
  • José L. Ayala
    • 2
  • Jose M. Moya
    • 3
  1. 1.CEI Campus Moncloa UCM-UPMSpain
  2. 2.Complutense University of MadridSpain
  3. 3.Technical University of MadridSpain

Personalised recommendations