Exploiting Twitter for Spiking Query Classification

  • Mitsuo Yoshida
  • Yuki Arase
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7675)


We propose a method for classifying queries whose frequency spikes in a search engine into their topical categories such as celebrities and sports. Unlike previous methods using Web search results and query logs that take a certain period of time to follow spiking queries, we exploit Twitter to timely classify spiking queries by focusing on its massive amount of super-fresh content. The proposed method leverages unique information in Twitter—not only tweets but also users and hashtags. We integrate such heterogeneous information in a graph and classify queries using a graph-based semi-supervised classification method. We design an experiment to replicate a situation when queries spike. The results indicate that the proposed method functions effectively and also demonstrate that accuracy improves by combining the heterogeneous information in Twitter.


Query Classification Spiking Query Twitter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. In: WSDM 2008, pp. 183–194 (2008)Google Scholar
  2. 2.
    Baeza-Yates, R., Calderón-Benavides, L., González-Caro, C.N.: The Intention Behind Web Queries. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209, pp. 98–109. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Beitzel, S.M., Jensen, E.C., Frieder, O., Lewis, D.D., Chowdhury, A., Kolcz, A.: Improving automatic query classification via semi-supervised learning. In: ICDM 2005, pp. 42–49 (2005)Google Scholar
  4. 4.
    Broder, A.Z., Fontoura, M., Gabrilovich, E., Joshi, A., Josifovski, V., Zhang, T.: Robust classification of rare queries using web knowledge. In: SIGIR 2007, pp. 231–238 (2007)Google Scholar
  5. 5.
    Diemert, E., Vandelle, G.: Unsupervised query categorization using automatically-built concept graphs. In: WWW 2009, pp. 461–461 (2009)Google Scholar
  6. 6.
    Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.: Time is of the essence: improving recency ranking using twitter data. In: WWW 2010, pp. 331–340 (2010)Google Scholar
  7. 7.
    Hu, J., Wang, G., Lochovsky, F., Tao Sun, J., Chen, Z.: Understanding user’s query intent with Wikipedia. In: WWW 2009, pp. 471–480 (2009)Google Scholar
  8. 8.
    Kudo, T., Yamamoto, K., Matsumoto, Y.: Applying conditional random fields to Japanese morphological analysis. In: EMNLP 2004, pp. 230–237 (2004)Google Scholar
  9. 9.
    Kulkarni, A., Teevan, J., Svore, K.M., Dumais, S.T.: Understanding temporal query dynamics. In: WSDM 2011, pp. 167–176 (2011)Google Scholar
  10. 10.
    Li, X., Wang, Y.-Y., Acero, A.: Learning query intent from regularized click graphs. In: SIGIR 2008, pp. 339–346 (2008)Google Scholar
  11. 11.
    Li, Y., Zheng, Z., Dai, H.K.: KDD CUP-2005 report: facing a great challenge. SIGKDD Explor. Newsl. 7(2), 91–99 (2005)CrossRefGoogle Scholar
  12. 12.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: WWW 2010, pp. 851–860 (2010)Google Scholar
  13. 13.
    Shen, D., Sun, J.-T., Yang, Q., Chen, Z.: Building bridges for web query classification. In: SIGIR 2006, pp. 131–138 (2006)Google Scholar
  14. 14.
    Talukdar, P., Crammer, K.: New Regularized Algorithms for Transductive Learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 442–457. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML 2003, pp. 912–919 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mitsuo Yoshida
    • 1
  • Yuki Arase
    • 2
  1. 1.Graduate School of Systems and Information EngineeringUniversity of TsukubaTsukubaJapan
  2. 2.Microsoft Research AsiaBeijingP.R. China

Personalised recommendations