Modified Harmony Search for Global Optimization

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 199)

Abstract

Harmony search (HS) is a meta-heuristic optimization method imitating the music improvisation process where musicians improvise their instruments’ pitches searching for a perfect state of harmony. HS is a reliable, accurate and robust optimization technique scheme for global optimization over continuous spaces. This paper presents an, improved variants of HS algorithm, called the Modified Harmony search (MHS). Performance comparisons of the proposed methods are provided against the original HS and two improved variant of HS such as Improved Harmony search (IHS) and global-best Harmony search (GHS). The Modified Harmony search algorithm on several benchmark optimization problems shows a marked improvement in performance over the traditional HS, HIS and GHS.

Keywords

Meta-heuristic IHS GHS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geem, Z., Kim, J., Loganathan, G.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  2. 2.
    Geem, Z.W., et al.: Optimal Design of Water Distribution Networks Using Parameter-Setting-Free Harmony Search for Two Major Parameters. Journal of Water Resources Planning and Management 137(4), 377–380 (2011)CrossRefGoogle Scholar
  3. 3.
    Taleizadeh, A.A., et al.: Multiple-buyer multiple-vendor multi-product multi-constraint supply chain problem with stochastic demand and variable lead-time: A harmony search algorithm. Applied Mathematics and Computation 217(22), 9234–9253 (2011)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Gil-Lopez, S., Landa-Torres, I., Del Ser, J., Salcedo-Sanz, S., Manjarres, D., Portilla-Figueras, J.A.: A Novel Grouping Heuristic Algorithm for the Switch Location Problem Based on a Hybrid Dual Harmony Search Technique. In: Cabestany, J., Rojas, I., Joya, G. (eds.) IWANN 2011, Part I. LNCS, vol. 6691, pp. 17–24. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Sui, J., et al.: Mine ventilation optimization analysis and airflow control based on harmony annealing search 6(6), 1270–1277 (2011)MathSciNetGoogle Scholar
  6. 6.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Applied Mathematics and Computation 188(2), 1567–1579 (2007)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Omran, M.G.H., Mahdavi, M.: Global-best harmony search. Applied Mathematics and Computation 198(2), 643–656 (2008)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Omran, M.G.H., Mahdavi, M.: Global-best harmony search. International Journal of Applied Mathematics and Computation (2007), doi:10.1016/j.amc.2007.09.004Google Scholar
  9. 9.
    Lee, K., Geem, Z.: A new meta-heuristic algorithm for continuous engineering ptimization: harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering 194, 3902–3933 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Das, S., Konar, A., Chakraborty, U.K.: Two Improved Differential Evolution Schemes for Faster Global Search. In: GECCO 2005, Washington, DC, USA, June 25-29 (2005), ACM 1-59593-010-8/05/0006…$5.00Google Scholar
  11. 11.
    Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13, 526–553 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.ANITSVishakapatnamIndia
  2. 2.MITSRayagadaIndia

Personalised recommendations